40 research outputs found

    Investigating the genetic complexity of glaucoma

    Get PDF
    Glaucoma is an age-related chronic eye disease that damages the optic nerve, a cranial nerve that is pivotal for vision. Primary open-angle glaucoma (POAG) represents the most prevalent type of this disease and its prevalence varies between populations. It ranges from 1 to 4% in Europe and from 2 to 7% in African countries in adults aged 40 years and over. The condition is asymptomatic in its early stages, a peculiarity that explains why most of the cases are initially unaware of having this disease and are left undiagnosed. Many risk factors for POAG have been recognised. The most widely acknowledged include: advanced age, elevated intraocular pressure, having African descent, positive family history of glaucoma, and thin central corneal thickness. Genetic studies conducted in twins, families, and populations revealed that POAG is a heterogeneous complex disease with a large heritable component. So far, despite the vast and constantly increasing genetic investigation, the identified loci explain only 10% of POAG risk, predominately in European and Asian populations. For this reason, in individuals of African ancestry most of the variants already identified do not seem to play a role in the disease, which suggests a population-specific genetic architecture. Clearly, there is still a large portion of missing and hidden heritability to be found. The aim of the research presented here was to investigate different genetic risk factors contributing to glaucoma susceptibility that may explain part of the missing heritability. The sources of these risk factors included the analysis of ethnic risk, common variants, mutations, variations in copy number in the nuclear and analysis of mitochondrial genome

    Genome-wide CNV investigation suggests a role for cadherin, Wnt, and p53 pathways in primary open-angle glaucoma

    Get PDF
    BACKGROUND: To investigate whether copy number variations (CNVs) are implicated in molecular mechanisms underlying primary open-angle glaucoma (POAG), we used genotype data of POAG individuals and healthy controls from two case-control studies, AGS (n = 278) and GLGS-UGLI (n = 1292). PennCNV, QuantiSNP, and cnvPartition programs were used to detect CNV. Stringent quality controls at both sample and marker levels were applied. The identified CNVs were intersected in CNV region (CNVR). After, we performed burden analysis, CNV-genome-wide association analysis, gene set overrepresentation and pathway analysis. In addition, in human eye tissues we assessed the expression of the genes lying within significant CNVRs. RESULTS: We reported a statistically significant greater burden of CNVs in POAG cases compared to controls (p-value = 0,007). In common between the two cohorts, CNV-association analysis identified statistically significant CNVRs associated with POAG that span 11 genes (APC, BRCA2, COL3A1, HLA-DRB1, HLA-DRB5, HLA-DRB6, MFSD8, NIPBL, SCN1A, SDHB, and ZDHHC11). Functional annotation and pathway analysis suggested the involvement of cadherin, Wnt signalling, and p53 pathways. CONCLUSIONS: Our data suggest that CNVs may have a role in the susceptibility of POAG and they can reveal more information on the mechanism behind this disease. Additional genetic and functional studies are warranted to ascertain the contribution of CNVs in POAG. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-021-07846-1

    Influence of electromagnetic radiation emitted by daily-use electronic devices on the Eyemate (R) system in-vitro:a feasibility study

    Get PDF
    Background: EyemateŸ is a system for the continual monitoring of intraocular pressure (IOP), composed of an intraocular sensor, and a hand-held reader device. As the eyemateŸ-IO sensor communicates with the hand-held reader telemetrically, some patients might fear that the electronic devices that they use on a daily basis might somehow interfere with this communication, leading to unreliable measurements of IOP. In this study, we investigated the effect of electromagnetic radiation produced by a number of everyday electronic devices on the measurements made by an eyemateŸ-IO sensor in-vitro, in an artificial and controlled environment. Methods: The eyemateŸ-IO sensor was suspended in a sterile 0.9% sodium chloride solution and placed in a water bath at 37 °C. The antenna, connected to a laptop for recording the data, was positioned at a fixed distance of 1 cm from the sensor. Approximately 2 hrs of "quasi-continuous"measurements were recorded for the baseline and for a cordless phone, a smart-phone and a laptop. Repeated measures ANOVA was used to compare any possible differences between the baseline and the tested devices. Results: For baseline measurements, the sensor maintained a steady-state, resulting in a flat profile at a mean pressure reading of 0.795 ± 0.45 hPa, with no apparent drift. No statistically significant difference (p = 0.332) was found between the fluctuations in the baseline and the tested devices (phone: 0.76 ± 0.41 hPa; cordless: 0.787 ± 0.26 hPa; laptop: 0.775 ± 0.39 hPa). Conclusion: In our in-vitro environment, we found no evidence of signal drifts or fluctuations associated with the tested devices, thus showing a lack of electromagnetic interference with data transmission in the tested frequency ranges

    Mitochondrial Genome Study Identifies Association Between Primary Open-Angle Glaucoma and Variants in MT-CYB, MT-ND4 Genes and Haplogroups

    Get PDF
    Background and purpose: Primary open-angle glaucoma (POAG) is an optic neuropathy characterized by death of retinal ganglion cells and atrophy of the optic nerve head. The susceptibility of the optic nerve to damage has been shown to be mediated by mitochondrial dysfunction. In this study, we aimed to determine a possible association between mitochondrial SNPs or haplogroups and POAG. Methods: Mitochondrial DNA single nucleotide polymorphisms (mtSNPs) were genotyped using the Illumina Infinium Global Screening Array-24 (GSA) 700K array set. Genetic analyses were performed in a POAG case-control study involving the cohorts, Groningen Longitudinal Glaucoma Study-Lifelines Cohort Study and Amsterdam Glaucoma Study, including 721 patients and 1951 controls in total. We excluded samples not passing quality control for nuclear genotypes and samples with low call rate for mitochondrial variation. The mitochondrial variants were analyzed both as SNPs and haplogroups. These were determined with the bioinformatics software HaploGrep, and logistic regression analysis was used for the association, as well as for SNPs. Results: Meta-analysis of the results from both cohorts revealed a significant association between POAG and the allele A of rs2853496 [odds ratio (OR) = 0.64; p = 0.006] within the MT-ND4 gene, and for the T allele of rs35788393 (OR = 0.75; p = 0.041) located in the MT-CYB gene. In the mitochondrial haplogroup analysis, the most significant p-value was reached by haplogroup K (p = 1.2 × 10(−05)), which increases the risk of POAG with an OR of 5.8 (95% CI 2.7–13.1). Conclusion: We identified an association between POAG and polymorphisms in the mitochondrial genes MT-ND4 (rs2853496) and MT-CYB (rs35788393), and with haplogroup K. The present study provides further evidence that mitochondrial genome variations are implicated in POAG. Further genetic and functional studies are required to substantiate the association between mitochondrial gene polymorphisms and POAG and to define the pathophysiological mechanisms of mitochondrial dysfunction in glaucoma

    Novel mutations in the PITX2 gene in Pakistani and Mexican families with Axenfeld-Rieger syndrome

    Get PDF
    Purpose Axenfeld-Rieger syndrome (ARS) is a rare autosomal dominant disorder that affects the anterior segment of the eye. The aim of this study was to examine the PITX2 gene to identify possible novel mutations in Pakistani and Mexican families affected by the ARS phenotype. Methods Three unrelated probands with a diagnosis of ARS were recruited for this study. Genomic DNA was isolated from the peripheral blood of the probands and their family members. Polymerase chain reaction and Sanger sequencing were used for the analysis of coding exons and the flanking intronic regions of the PITX2 gene. Bioinformatics tools and database (VarSome, Provean, and MutationTaster, SIFT, PolyPhen-2, and HOPE) were evaluated to explore missense variants. Results We identified novel heterozygous variations in the PITX2 gene that segregated with the ARS phenotype within the families. The variant NM_153426.2(PITX2):c.226G > T or p.(Ala76Ser) and the mutation NM_153426.2(PITX2):c.455G > A or p.(Cys152Tyr) were identified in two Pakistani pedigrees, and the mutation NM_153426.2(PITX2):c.242_265del or p.(Lys81_Gln88del), segregated in a Mexican family. Conclusion Our study extends the spectrum of PITX2 mutations in individuals with ARS, enabling an improved diagnosis of this rare but serious syndrome

    Differences in clinical presentation of primary open-angle glaucoma between African and European populations

    Get PDF
    PURPOSE: Primary open‐angle glaucoma (POAG) has been reported to occur more frequently in Africans, and to follow a more severe course compared to Europeans. We aimed to describe characteristics of POAG presentation and treatment across three ethnic groups from Africa and one from Europe. METHODS: We ascertained 151 POAG patients from South African Coloured (SAC) and 94 South African Black (SAB) ethnicity from a university hospital in South Africa. In Tanzania, 310 patients were recruited from a university hospital and a referral hospital. In the Netherlands, 241 patients of European ancestry were included. All patients were over 35 years old and had undergone an extensive ophthalmic examination. Patients were diagnosed according to the ISGEO criteria. A biogeographic ancestry analysis was performed to estimate the proportion of genetic African ancestry (GAA). RESULTS: The biogeographic ancestry analysis showed that the median proportion of GAA was 97.6% in Tanzanian, 100% in SAB, 34.2% in SAC and 1.5% in Dutch participants. Clinical characteristics at presentation for Tanzanians, SAB, SAC and Dutch participants, respectively: mean age: 63, 57, 66, 70 years (p < 0.001); visual acuity in the worse eye: 1.78, 1.78, 0.3, 0.3 LogMAR (p < 0.001); maximum intraocular pressure of both eyes: 36, 34, 29, 29 mmHg (p (anova)  < 0.001); maximum vertical cup to disc ratio (VCDR) of both eyes: 0.90, 0.90, 0.84, 0.83 (p < 0.001); mean central corneal thickness: 506, 487, 511, 528 Όm (p < 0.001). Fourteen percent of Tanzanian patients presented with blindness (<3/60 Snellen) in the better eye in contrast to only 1% in the Dutch. CONCLUSION: In this multi‐ethnic comparative study, Sub‐Saharan Africans present at a younger age with lower visual acuity, higher IOP, larger VCDR, than SAC and Dutch participants. This indicates the more progressive and destructive course in Sub‐Saharan Africans

    Global Biobank analyses provide lessons for developing polygenic risk scores across diverse cohorts

    Get PDF
    Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.</p

    Differences in clinical presentation of primary open-angle glaucoma between African and European populations

    Get PDF
    Purpose: Primary open-angle glaucoma (POAG) has been reported to occur more frequently in Africans, and to follow a more severe course compared to Europeans. We aimed to describe characteristics of POAG presentation and treatment across three ethnic groups from Africa and one from Europe. Methods: We ascertained 151 POAG patients from South African Coloured (SAC) and 94 South African Black (SAB) ethnicity from a university hospital in South Africa. In Tanzania, 310 patients were recruited from a university hospital and a referral hospital. In the Netherlands, 241 patients of European ancestry were included. All patients were over 35 years old and had undergone an extensive ophthalmic examination. Patients were diagnosed according to the ISGEO criteria. A biogeographic ancestry analysis was performed to estimate the proportion of genetic African ancestry (GAA). Results: The biogeographic ancestry analysis showed that the median proportion of GAA was 97.6% in Tanzanian, 100% in SAB, 34.2% in SAC and 1.5% in Dutch participants. Clinical characteristics at presentation for Tanzanians, SAB, SAC and Dutch participants, respectively: mean age: 63, 57, 66, 70 years (p < 0.001); visual acuity in the worse eye: 1.78, 1.78, 0.3, 0.3 LogMAR (p < 0.001); maximum intraocular pressure of both eyes: 36, 34, 29, 29 mmHg (panova < 0.001); maximum vertical cup to disc ratio (VCDR) of both eyes: 0.90, 0.90, 0.84, 0.83 (p < 0.001); mean central corneal thickness: 506, 487, 511, 528 Όm (p < 0.001). Fourteen percent of Tanzanian patients presented with blindness (<3/60 Snellen) in the better eye in contrast to only 1% in the Dutch. Conclusion: In this multi-ethnic comparative study, Sub-Saharan Africans present at a younger age with lower visual acuity, higher IOP, larger VCDR, than SAC and Dutch participants. This indicates the more progressive and destructive course in Sub-Saharan Africans

    Global Biobank Meta-analysis Initiative:Powering genetic discovery across human disease

    Get PDF
    Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.</p

    A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus

    Get PDF
    Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease
    corecore