193 research outputs found
Representations of finite group schemes and morphisms of projective varieties
Given a finite group scheme \cG over an algebraically closed field of
characteristic \Char(k)=p>0, we introduce new invariants for a \cG-module
by associating certain morphisms $\deg^j_M : U_M \lra \Gr_d(M) \ \
(1\!\le\!j\!\le\! p\!-\!1)MMj0j\rk^j(M)\rk^j(M)jMMjMM^\astM\alpha^\ast(M)Mp\alpha : k[X]/(X^p) \lra k\cG$
Gradings of non-graded Hamiltonian Lie algebras
A thin Lie algebra is a Lie algebra graded over the positive integers
satisfying a certain narrowness condition. We describe several cyclic grading
of the modular Hamiltonian Lie algebras H(2\colon\n;\omega_2) (of dimension
one less than a power of ) from which we construct infinite-dimensional thin
Lie algebras. In the process we provide an explicit identification of
H(2\colon\n;\omega_2) with a Block algebra. We also compute its second
cohomology group and its derivation algebra (in arbitrary prime
characteristic).Comment: 36 pages, to be published in J. Austral. Math. Soc. Ser.
Generators of simple Lie algebras in arbitrary characteristics
In this paper we study the minimal number of generators for simple Lie
algebras in characteristic 0 or p > 3. We show that any such algebra can be
generated by 2 elements. We also examine the 'one and a half generation'
property, i.e. when every non-zero element can be completed to a generating
pair. We show that classical simple algebras have this property, and that the
only simple Cartan type algebras of type W which have this property are the
Zassenhaus algebras.Comment: 26 pages, final version, to appear in Math. Z. Main improvements and
corrections in Section 4.
Lie bialgebras of generalized Witt type
In a paper by Michaelis a class of infinite-dimensional Lie bialgebras
containing the Virasoro algebra was presented. This type of Lie bialgebras was
classified by Ng and Taft. In this paper, all Lie bialgebra structures on the
Lie algebras of generalized Witt type are classified. It is proved that, for
any Lie algebra of generalized Witt type, all Lie bialgebras on are
coboundary triangular Lie bialgebras. As a by-product, it is also proved that
the first cohomology group is trivial.Comment: 14 page
- …
