508 research outputs found

    Magnetic order in a spin-1/2 interpolating kagome-square Heisenberg antiferromagnet

    Full text link
    The coupled cluster method is applied to a spin-half model at zero temperature (T=0T=0), which interpolates between Heisenberg antiferromagnets (HAF's) on a kagome and a square lattice. With respect to an underlying triangular lattice the strengths of the Heisenberg bonds joining the nearest-neighbor (NN) kagome sites are J10J_{1} \geq 0 along two of the equivalent directions and J20J_{2} \geq 0 along the third. Sites connected by J2J_{2} bonds are themselves connected to the missing NN non-kagome sites of the triangular lattice by bonds of strength J10J_{1}' \geq 0. When J1=J1J_{1}'=J_{1} and J2=0J_{2}=0 the model reduces to the square-lattice HAF. The magnetic ordering of the system is investigated and its T=0T=0 phase diagram discussed. Results for the kagome HAF limit are among the best available.Comment: 21 pages, 8 figure

    Coupled Cluster Treatment of the Shastry-Sutherland Antiferromagnet

    Full text link
    We consider the zero-temperature properties of the spin-half two-dimensional Shastry-Sutherland antiferromagnet by using a high-order coupled cluster method (CCM) treatment. We find that this model demonstrates various groundstate phases (N\'{e}el, magnetically disordered, orthogonal dimer), and we make predictions for the positions of the phase transition points. In particular, we find that orthogonal-dimer state becomes the groundstate at J2d/J11.477{J}^{d}_2/J_1 \sim 1.477. For the critical point J2c/J1J_2^{c}/J_1 where the semi-classical N\'eel order disappears we obtain a significantly lower value than J2d/J1J_2^{d}/J_1, namely, J2c/J1{J}^{c}_2/J_1 in the range [1.14,1.39][1.14, 1.39]. We therefore conclude that an intermediate phase exists between the \Neel and the dimer phases. An analysis of the energy of a competing spiral phase yields clear evidence that the spiral phase does not become the groundstate for any value of J2J_2. The intermediate phase is therefore magnetically disordered but may exhibit plaquette or columnar dimer ordering.Comment: 6 pages, 5 figure

    The spin-half Heisenberg antiferromagnet on two Archimedian lattices: From the bounce lattice to the maple-leaf lattice and beyond

    Full text link
    We investigate the ground state of the two-dimensional Heisenberg antiferromagnet on two Archimedean lattices, namely, the maple-leaf and bounce lattices as well as a generalized JJ-JJ' model interpolating between both systems by varying J/JJ'/J from J/J=0J'/J=0 (bounce limit) to J/J=1J'/J=1 (maple-leaf limit) and beyond. We use the coupled cluster method to high orders of approximation and also exact diagonalization of finite-sized lattices to discuss the ground-state magnetic long-range order based on data for the ground-state energy, the magnetic order parameter, the spin-spin correlation functions as well as the pitch angle between neighboring spins. Our results indicate that the "pure" bounce (J/J=0J'/J=0) and maple-leaf (J/J=1J'/J=1) Heisenberg antiferromagnets are magnetically ordered, however, with a sublattice magnetization drastically reduced by frustration and quantum fluctuations. We found that magnetic long-range order is present in a wide parameter range 0J/JJc/J0 \le J'/J \lesssim J'_c/J and that the magnetic order parameter varies only weakly with J/JJ'/J. At Jc1.45JJ'_c \approx 1.45 J a direct first-order transition to a quantum orthogonal-dimer singlet ground state without magnetic long-range order takes place. The orthogonal-dimer state is the exact ground state in this large-JJ' regime, and so our model has similarities to the Shastry-Sutherland model. Finally, we use the exact diagonalization to investigate the magnetization curve. We a find a 1/3 magnetization plateau for J/J1.07J'/J \gtrsim 1.07 and another one at 2/3 of saturation emerging only at large J/J3J'/J \gtrsim 3.Comment: 9 pages, 10 figure

    The status of Rangifer tarandus caribou in Yukon, Canada

    Get PDF
    This paper summarizes the population trends as well as research and management programs for woodland caribou {Rangifer tarandus caribou) in Yukon. Most herds are stable although not all are counted regularly and systematic monitoring of herds remains an essential need. Over the past decade the Southern Lakes, Aishihik, and Finlayson herds have been well studied and provide valuable models for guiding Yukon management programs. Over harvest and the spread of agriculture, forestry and mining are ongoing human activities are of concern to caribou managers

    Numerical and approximate analytical results for the frustrated spin-1/2 quantum spin chain

    Full text link
    We study the T=0T=0 frustrated phase of the 1D1D quantum spin-12\frac 12 system with nearest-neighbour and next-nearest-neighbour isotropic exchange known as the Majumdar-Ghosh Hamiltonian. We first apply the coupled-cluster method of quantum many-body theory based on a spiral model state to obtain the ground state energy and the pitch angle. These results are compared with accurate numerical results using the density matrix renormalisation group method, which also gives the correlation functions. We also investigate the periodicity of the phase using the Marshall sign criterion. We discuss particularly the behaviour close to the phase transitions at each end of the frustrated phase.Comment: 17 pages, Standard Latex File + 7 PostScript figures in separate file. Figures also can also be requested from [email protected]

    Purinergic junctional transmission and propagation of calcium waves in cultured spinal cord microglial networks

    Get PDF
    In order to elucidate the mechanisms of purinergic transmission of calcium (Ca(2 + )) waves between microglial cells, we have employed micro-photolithographic methods to form discrete patterns of microglia that allow quantitative measurements of Ca(2 + ) wave propagation. Microglia were confined to lanes 20–100 [Formula: see text] wide and Ca(2 + ) waves propagated from a point of mechanical stimulation, with a diminution in amplitude, for about 120 [Formula: see text]. The number of cells participating in propagation also decreased over this distance. Ca(2 + ) waves could propagate across a cell-free lane from one microglia lane to another if this distance of separation was less than about 60 [Formula: see text] , indicating that propagation involved diffusion of a chemical transmitter. This transmitter was identified as ATP since all Ca(2 + ) wave propagation was blocked by the purinoceptor antagonist suramin, which blocks P2Y(2) and P2Y(12) at relatively low concentrations. Antibodies to P2Y(12) showed these at very high density compared with P2Y(2), indicating a role for P2Y(12) receptors. These observations were quantitatively accounted for by a model in which the main determinants are the diffusion of ATP released from a stimulated microglial cell and differences in the dissociation constant of the purinoceptors on the microglial cells

    Ground-state phases of the frustrated spin-1/2 J1J_{1}--J2J_{2}--J3J_{3} Heisenberg ferromagnet (J1<0J_{1}<0) on the honeycomb lattice with J3=J2>0J_{3}=J_{2}>0

    Full text link
    We study the ground-state (gs) properties of the frustrated spin-1/2 J1J_{1}--J2J_{2}--J3J_{3} Heisenberg model on a honeycomb lattice with ferromagnetic (FM) nearest-neighbor (J1=1J_{1}=-1) exchange and frustrating antiferromagnetic (AFM) next-nearest-neighbor (J2>0J_{2}>0) and next-next-nearest-neighbor (J3>0J_{3}>0) exchanges, for the case J3=J2J_{3}=J_{2}. We use the coupled cluster method in high orders of approximation, complemented by the exact diagonalization of a lattice with 32 sites, and calculate the gs energy, magnetic order parameter, and spin-spin correlation functions. We find a quantum phase transition between regions characterized by FM order and a form of AFM ("striped") collinear order at J2c0.1095±0.0005J^{c}_{2} \approx 0.1095 \pm 0.0005. We compare results for the FM case (with J1=1J_{1}=-1) to previous results for the corresponding AFM case (with J1=+1J_{1}=+1). While the magnetic order parameters behave similarly for the FM and the AFM models for large values of the frustration parameter J2J_{2}, there are considerable differences between them for J2/J10.6J_{2}/|J_{1}| \lesssim 0.6. For example, the quasiclassical collinear magnetic long-range order for the AFM model (with J1=+1J_{1}=+1) breaks down at J2c20.60J^{c_{2}}_{2} \approx 0.60, whereas the "equivalent" point for the FM model (with J1=1J_{1}=-1) occurs at J2c0.11J^{c}_{2} \approx 0.11. Unlike in the AFM model (with J1=+1J_{1}=+1), where a plaquette valence-bond crystal phase intrudes between the two corresponding quasiclassical AFM phases (with N\'eel and striped order) for J2c1<J2<J2c2J^{c_{1}}_{2} < J_{2} < J^{c_{2}}_{2}, with J2c10.47J^{c_{1}}_{2} \approx 0.47, we find no clear indications in the FM model for an intermediate magnetically disordered phase between the phases exhibiting FM and striped order. Instead, the evidence points strongly to a direct first-order transition between the two ordered phases of the FM model.Comment: 21 pages, 6 figures (a & b

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    Strong and weak coupling limits in optics of quantum well excitons

    Get PDF
    A transition between the strong (coherent) and weak (incoherent) coupling limits of resonant interaction between quantum well (QW) excitons and bulk photons is analyzed and quantified as a function of the incoherent damping rate caused by exciton-phonon and exciton-exciton scattering. For confined QW polaritons, a second, anomalous, damping-induced dispersion branch arises and develops with increasing damping. In this case, the strong-weak coupling transition is attributed to a critical damping rate, when the intersection of the normal and damping-induced dispersion branches occurs. For the radiative states of QW excitons, i.e., for radiative QW polaritons, the transition is described as a qualitative change of the photoluminescence spectrum at grazing angles along the QW structure. Furthermore, we show that the radiative corrections to the QW exciton states with in-plane wavevector approaching the photon cone are universally scaled by an energy parameter rather than diverge. The strong-weak coupling transition rates are also proportional to the same energy parameter. The numerical evaluations are given for a GaAs single quantum well with realistic parameters.Comment: Published in Physical Review B. 29 pages, 12 figure
    corecore