582 research outputs found

    High-Order Coupled Cluster Method (CCM) Formalism 1: Ground- and Excited-State Properties of Lattice Quantum Spin Systems with s>=1/2s >= 1/2

    Full text link
    The coupled cluster method (CCM) is a powerful and widely applied technique of modern-day quantum many-body theory. It has been used with great success in order to understand the properties of quantum magnets at zero temperature. This is due largely to the application of computational techniques that allow the method to be applied to high orders of approximation using localised approximation schemes, e.g., such as the LSUBmm scheme. In this article, the high-order CCM formalism for the ground and excited states of quantum magnetic systems are extended to those with spin quantum number s≥12s \ge \frac 12. Solution strategies for the ket- and bra-state equations are also considered. Aspects of extrapolation of CCM expectation values are discussed and future topics regarding extrapolations are presented.Comment: 15 page

    The frustrated spin-1/2 J1-J2 Heisenberg ferromagnet on the square lattice: Exact diagonalization and Coupled-Cluster study

    Get PDF
    We investigate the ground-state magnetic order of the spin-1/2 J1-J2 Heisenberg model on the square lattice with ferromagnetic nearest-neighbor exchange J1<0 and frustrating antiferromagnetic next-nearest neighbor exchange J2>0. We use the coupled-cluster method to high orders of approximation and Lanczos exact diagonalization of finite lattices of up to N=40 sites in order to calculate the ground-state energy, the spin-spin correlation functions, and the magnetic order parameter. We find that the transition point at which the ferromagnetic ground state disappears is given by J2^{c1}=0.393|J1| (exact diagonalization) and J2^{c1}=0.394|J1| (coupled-cluster method). We compare our results for ferromagnetic J1 with established results for the spin-1/2 J1-J2 Heisenberg model with antiferromagnetic J1. We find that both models (i.e., ferro- and antiferromagnetic J1) behave similarly for large J2, although significant differences between them are observed for J2/|J1| \lesssim 0.6. Although the semiclassical collinear magnetic long-range order breaks down at J2^{c2} \approx 0.6J1 for antiferromagnetic J1, we do not find a similar breakdown of this kind of long-range order until J2 \sim 0.4|J1| for the model with ferromagnetic J1. Unlike the case for antiferromagnetic J1, if an intermediate disordered phase does occur between the phases exhibiting semiclassical collinear stripe order and ferromagnetic order for ferromagnetic J1 then it is likely to be over a very small range below J2 \sim 0.4|J1|.Comment: 15 pages, 7 figures, 2 table

    Ab Initio Calculations of the Spin-Half XY Model

    Full text link
    In this article, the correlated basis-function (CBF) method is applied for the first time to the quantum spin-half {\it XY} model on the linear chain, the square lattice, and the simple cubic lattice. In this treatment of the quantum spin-half {\it XY} model a Jastrow ansatz is utilised to approximate the ground-state wave function. Results for the ground-state energy and the sublattice magnetisation are presented, and evidence that the CBF detects the quantum phase transition point in this model is also presented. The CBF results are compared to previous coupled cluster method (CCM) results for the spin-half {\it XY} model, and the two formalisms are then compared and contrasted.Comment: 10 pages, 3 figure

    High-Order Coupled Cluster Calculations Via Parallel Processing: An Illustration For CaV4_4O9_9

    Full text link
    The coupled cluster method (CCM) is a method of quantum many-body theory that may provide accurate results for the ground-state properties of lattice quantum spin systems even in the presence of strong frustration and for lattices of arbitrary spatial dimensionality. Here we present a significant extension of the method by introducing a new approach that allows an efficient parallelization of computer codes that carry out ``high-order'' CCM calculations. We find that we are able to extend such CCM calculations by an order of magnitude higher than ever before utilized in a high-order CCM calculation for an antiferromagnet. Furthermore, we use only a relatively modest number of processors, namely, eight. Such very high-order CCM calculations are possible {\it only} by using such a parallelized approach. An illustration of the new approach is presented for the ground-state properties of a highly frustrated two-dimensional magnetic material, CaV4_4O9_9. Our best results for the ground-state energy and sublattice magnetization for the pure nearest-neighbor model are given by Eg/N=−0.5534E_g/N=-0.5534 and M=0.19M=0.19, respectively, and we predict that there is no N\'eel ordering in the region 0.2≤J2/J1≤0.70.2 \le J_2/J_1 \le 0.7. These results are shown to be in excellent agreement with the best results of other approximate methods.Comment: 4 page

    Magnetic order in a spin-1/2 interpolating kagome-square Heisenberg antiferromagnet

    Full text link
    The coupled cluster method is applied to a spin-half model at zero temperature (T=0T=0), which interpolates between Heisenberg antiferromagnets (HAF's) on a kagome and a square lattice. With respect to an underlying triangular lattice the strengths of the Heisenberg bonds joining the nearest-neighbor (NN) kagome sites are J1≥0J_{1} \geq 0 along two of the equivalent directions and J2≥0J_{2} \geq 0 along the third. Sites connected by J2J_{2} bonds are themselves connected to the missing NN non-kagome sites of the triangular lattice by bonds of strength J1′≥0J_{1}' \geq 0. When J1′=J1J_{1}'=J_{1} and J2=0J_{2}=0 the model reduces to the square-lattice HAF. The magnetic ordering of the system is investigated and its T=0T=0 phase diagram discussed. Results for the kagome HAF limit are among the best available.Comment: 21 pages, 8 figure

    The spin-1/2 square-lattice J_1-J_2 model: The spin-gap issue

    Full text link
    We use the coupled cluster method to high orders of approximation in order to calculate the ground-state energy, the ground-state magnetic order parameter, and the spin gap of the spin-1/2 J_1-J_2 model on the square lattice. We obtain values for the transition points to the magnetically disordered quantum paramagnetic phase of J_2^{c1}=0.454J_1 and J_2^{c2}= 0.588 J_1. The spin gap is zero in the entire parameter region accessible by our approach, i.e. for J_2 \le 0.49J_1 and J_2 > 0.58J_1. This finding is in favor of a gapless spin-liquid ground state in this parameter regime.Comment: 10 pages, 3 figures, accepted versio
    • …
    corecore