13 research outputs found

    A Fuzzy Inference Model for Predicting Irregular Human Behaviour During Stressful Missions

    Get PDF
    AbstractIn this paper a hybrid fuzzy inference and transfer function modeling is used to predict the irregular human behavior during hard and stressful tasks such as dangerous military missions. A set of affecting factors such as missioner's experience, fatigue, sunshine intensity, hungriness, thirstiness, psychological characteristics, affright, etc. may be taken to account. In this regard a dynamic system model is used to predict the convolution of the timed effects of different factors on irregular behavior of personnel during the mission. This approach of predicting irregular behavior or erroneous decision making of staff have serious usages in aerospace, military, social and similar projects where a wrong decision can have catastrophic outcome such as attempting to suicide by a pilot or killing civilians by a soldier in stressful situations. The effect of such behavior and decisions may even cause the failure of the overall project or mission. For example, killing civilians by a soldier can result to the overall failure of human terrain missions where the main objective is gaining trust between the local civilian population

    Space-independent community and hub structure of functional brain networks

    No full text
    Coordinated brain activity reflects underlying cognitive processes and can be modeled as a network of inter-regional functional connections. The most costly connections in the network are long-distance correlations that, in the absence of underlying structural connections, are maintained by sustained energetic inputs. Here, we present a spatial modeling approach that amplifies contributions made by long-distance functional connections to whole-brain network architecture, while simultaneously suppressing contributions made by short-range connections. We use this method to characterize the long-distance architecture of functional networks and to identify aspects of community and hub structure that are driven by long-distance correlations and that, we argue, are of greater functional significance. We find that based only on patterns of long-distance connectivity, primary sensory cortices occupy increasingly central positions and appear more “hub-like”. Additionally, we show that the community structure of long-distance connections spans multiple topological levels and differs from the community structure detected in networks that include both short-range and long-distance connections. In summary, these findings highlight the complex relationship between the brain’s physical layout and its functional architecture. The results presented here inform future analyses of community structure and network hubs in health, across development, and in the case of neuropsychiatric disorders

    Temporal fluctuations in the brain's modular architecture during movie-watching

    No full text
    Brain networks are flexible and reconfigure over time to support ongoing cognitive processes. However, tracking statistically meaningful reconfigurations across time has proven difficult. This has to do largely with issues related to sampling variability, making instantaneous estimation of network organization difficult, along with increased reliance on task-free (cognitively unconstrained) experimental paradigms, limiting the ability to interpret the origin of changes in network structure over time. Here, we address these challenges using time-varying network analysis in conjunction with a naturalistic viewing paradigm. Specifically, we developed a measure of inter-subject network similarity and used this measure as a coincidence filter to identify synchronous fluctuations in network organization across individuals. Applied to movie-watching data, we found that periods of high inter-subject similarity coincided with reductions in network modularity and increased connectivity between cognitive systems. In contrast, low inter-subject similarity was associated with increased system segregation and more rest-like architectures. We then used a data-driven approach to uncover clusters of functional connections that follow similar trajectories over time and are more strongly correlated during movie-watching than at rest. Finally, we show that synchronous fluctuations in network architecture over time can be linked to a subset of features in the movie. Our findings link dynamic fluctuations in network integration and segregation to patterns of inter-subject similarity, and suggest that moment-to-moment fluctuations in functional connectivity reflect shared cognitive processing across individuals

    Subject identification using edge-centric functional connectivity

    No full text
    Group-level studies do not capture individual differences in network organization, an important prerequisite for understanding neural substrates shaping behavior and for developing interventions in clinical conditions. Recent studies have employed ‘fingerprinting’ analyses on functional connectivity to identify subjects’ idiosyncratic features. Here, we develop a complementary approach based on an edge-centric model of functional connectivity, which focuses on the co-fluctuations of edges. We first show whole-brain edge functional connectivity (eFC) to be a robust substrate that improves identifiability over nodal FC (nFC) across different datasets and parcellations. Next, we characterize subjects’ identifiability at different spatial scales, from single nodes to the level of functional systems and clusters using k-means clustering. Across spatial scales, we find that heteromodal brain regions exhibit consistently greater identifiability than unimodal, sensorimotor, and limbic regions. Lastly, we show that identifiability can be further improved by reconstructing eFC using specific subsets of its principal components. In summary, our results highlight the utility of the edge-centric network model for capturing meaningful subject-specific features and sets the stage for future investigations into individual differences using edge-centric models

    Edge-centric functional network representations of human cerebral cortex reveal overlapping system-level architecture

    No full text
    Network neuroscience has relied on a node-centric network model in which cells, populations, and regions are linked to one another via anatomical or functional connections. This model cannot account for interactions of edges with one another. Here, we develop an edge-centric network model, which generates the novel constructs of “edge time series” and “edge functional connectivity” (eFC). Using network analysis, we show that at rest eFC is consistent across datasets and reproducible within the same individual over multiple scan sessions. We demonstrate that clustering eFC yields communities of edges that naturally divide the brain into overlapping clusters, with regions in sensorimotor and attentional networks exhibiting the greatest levels of overlap. We go on to show that eFC is systematically and consistently modulated by variation in sensory input. In future work, the edge-centric approach could be used to map the connectional architecture of brain circuits and for the development of brain-based biomarkers of disease and development

    Modular subgraphs in large-scale connectomes underpin spontaneous co-fluctuation events in mouse and human brains

    No full text
    Abstract Previous studies have adopted an edge-centric framework to study fine-scale network dynamics in human fMRI. To date, however, no studies have applied this framework to data collected from model organisms. Here, we analyze structural and functional imaging data from lightly anesthetized mice through an edge-centric lens. We find evidence of “bursty” dynamics and events - brief periods of high-amplitude network connectivity. Further, we show that on a per-frame basis events best explain static FC and can be divided into a series of hierarchically-related clusters. The co-fluctuation patterns associated with each cluster centroid link distinct anatomical areas and largely adhere to the boundaries of algorithmically detected functional brain systems. We then investigate the anatomical connectivity undergirding high-amplitude co-fluctuation patterns. We find that events induce modular bipartitions of the anatomical network of inter-areal axonal projections. Finally, we replicate these same findings in a human imaging dataset. In summary, this report recapitulates in a model organism many of the same phenomena observed in previously edge-centric analyses of human imaging data. However, unlike human subjects, the murine nervous system is amenable to invasive experimental perturbations. Thus, this study sets the stage for future investigation into the causal origins of fine-scale brain dynamics and high-amplitude co-fluctuations. Moreover, the cross-species consistency of the reported findings enhances the likelihood of future translation
    corecore