94 research outputs found

    Intra-breath arterial oxygen oscillations detected by a fast oxygen sensor in an animal model of acute respiratory distress syndrome

    Get PDF
    Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking PO2 changes dynamically when it varies rapidly. For example, arterial PO2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic PO2 sensor (<200 Β΅m diameter), suitable for human use, that has a fast response time, and can measure PO2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS

    Modelling mixing within the dead space of the lung improves predictions of functional residual capacity

    Get PDF
    Routine estimation of functional residual capacity (FRC) in ventilated patients has been a long held goal, with many methods previously proposed, but none have been used in routine clinical practice. This paper proposes three models for determining FRC using the nitrous oxide concentration from the entire expired breath in order to improve the precision of the estimate. Of the three models proposed, a dead space with two mixing compartments provided the best results, reducing the mean limits of agreement with the FRC measured by whole body plethysmography by up to 41%. This moves away from traditional lung models, which do not account for mixing within the dead space. Compared to literature values for FRC, the results are similar to those obtained using helium dilution and better than the LUFU device (DrΓ€ger Medical, Lubeck, Germany), with significantly better limits of agreement compared to plethysmography

    A Realistic Validation Study of a New Nitrogen Multiple-Breath Washout System

    Get PDF
    Background For reliable assessment of ventilation inhomogeneity, multiple-breath washout (MBW) systems should be realistically validated. We describe a new lung model for in vitro validation under physiological conditions and the assessment of a new nitrogen (N2)MBW system. Methods The N2MBW setup indirectly measures the N2 fraction (FN2) from main-stream carbon dioxide (CO2) and side-stream oxygen (O2) signals: FN2 = 1βˆ’FO2βˆ’FCO2βˆ’FArgon. For in vitro N2MBW, a double chamber plastic lung model was filled with water, heated to 37Β°C, and ventilated at various lung volumes, respiratory rates, and FCO2. In vivo N2MBW was undertaken in triplets on two occasions in 30 healthy adults. Primary N2MBW outcome was functional residual capacity (FRC). We assessed in vitro error (√[difference]2) between measured and model FRC (100–4174 mL), and error between tests of in vivo FRC, lung clearance index (LCI), and normalized phase III slope indices (Sacin and Scond). Results The model generated 145 FRCs under BTPS conditions and various breathing patterns. Mean (SD) error was 2.3 (1.7)%. In 500 to 4174 mL FRCs, 121 (98%) of FRCs were within 5%. In 100 to 400 mL FRCs, the error was better than 7%. In vivo FRC error between tests was 10.1 (8.2)%. LCI was the most reproducible ventilation inhomogeneity index. Conclusion The lung model generates lung volumes under the conditions encountered during clinical MBW testing and enables realistic validation of MBW systems. The new N2MBW system reliably measures lung volumes and delivers reproducible LCI values

    A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

    Get PDF
    Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia

    Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study)

    Get PDF
    INTRODUCTION: Lung cancer is a leading cause of cancer deaths worldwide and surgery remains the main treatment for early stage disease. Prior to the introduction of video-assisted thoracoscopic surgery (VATS), lung resection for cancer was undertaken through an open thoracotomy. To date, the evidence base supporting the different surgical approaches is based on non-randomised studies, small randomised trials and is focused mainly on short-term in-hospital outcomes. METHODS AND ANALYSIS: The VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer study is a UK multicentre parallel group randomised controlled trial (RCT) with blinding of outcome assessors and participants (to hospital discharge) comparing the effectiveness, cost-effectiveness and acceptability of VATS lobectomy versus open lobectomy for treatment of lung cancer. We will test the hypothesis that VATS lobectomy is superior to open lobectomy with respect to self-reported physical function 5 weeks after randomisation (approximately 1 month after surgery). Secondary outcomes include assessment of efficacy (hospital stay, pain, proportion and time to uptake of chemotherapy), measures of safety (adverse health events), oncological outcomes (proportion of patients upstaged to pathologic N2 (pN2) disease and disease-free survival), overall survival and health related quality of life to 1 year. The QuinteT Recruitment Intervention is integrated into the trial to optimise recruitment. ETHICS AND DISSEMINATION: This trial has been approved by the UK (Dulwich) National Research Ethics Service Committee London. Findings will be written-up as methodology papers for conference presentation, and publication in peer-reviewed journals. Many aspects of the feasibility work will inform surgical RCTs in general and these will be reported at methodology meetings. We will also link with lung cancer clinical studies groups. The patient and public involvement group that works with the Respiratory Biomedical Research Unit at the Brompton Hospital will help identify how we can best publicise the findings

    Severe unilateral bronchospasm mimicking inadvertent endobronchial intubation: a complication of the use of a topical lidocaine Laryngojet injector.

    No full text
    A healthy young woman is described in whom the left chest was unable to be inflated after intubation. The differential diagnosis and management are discussed. Severe unilateral bronchospasm was probably caused by topical lidocaine injected at the vocal cords and, inadvertently, into the left main bronchus with a Laryngojet device

    Severe unilateral bronchospasm mimicking inadvertent endobronchial intubation: a complication of the use of a topical lidocaine Laryngojet injector.

    No full text
    A healthy young woman is described in whom the left chest was unable to be inflated after intubation. The differential diagnosis and management are discussed. Severe unilateral bronchospasm was probably caused by topical lidocaine injected at the vocal cords and, inadvertently, into the left main bronchus with a Laryngojet device

    Simulating hypoxia and modelling the airway.

    No full text
    Apnoea due to airway obstruction is an ever present concern in anaesthesia and critical care practice and results in rapid development of hypoxaemia that is not always remediable by manual bag-mask ventilation. As it is often difficult or impossible to study experimentally (although some historical animal data exist), it is useful to model the kinetics of hypoxaemia following airway obstruction. Despite being a complex event, the consequences of airway obstruction can be predicted with reasonable fidelity using mathematical and computer modelling. Over the last 15 years, a number of high fidelity mathematical and computer models have been developed, that have thrown light on this important event

    Body temperature and its regulation

    No full text
    Humans are homeotherms, i.e. they fix their temperature regardless of their environment. This is vital for normal cellular function and for metabolism to be independent of external temperature. The body has a warm 'core' and a cooler peripheral 'shell' whose role is to regulate heat transfer in and out of the core. Body temperature is controlled by a feedback system with both peripheral and central sensors, and an integrator located in the hypothalamus. Anaesthesia exposes patients to thermoregulatory challenges due to enhanced heat loss from the core to the shell to the environment, and interference with the hypothalamic temperature 'set-point'. In extreme circumstances, deliberate hypothermia may provide benefits that outweigh the risks. Β© 2014 Published by Elsevier Ltd
    • …
    corecore