4,930 research outputs found
Ab initio Wannier-function-based correlated calculations of Born effective charges of crystalline LiO and LiCl
In this paper we have used our recently developed ab initio
Wannier-function-based methodology to perform extensive Hartree-Fock and
correlated calculations on LiO and LiCl to compute their Born effective
charges. Results thus obtained are in very good agreement with the experiments.
In particular, for the case of LiO, we resolve a controversy originating
in the experiment of Osaka and Shindo {[}Solid State Commun. 51 (1984) 421] who
had predicted the effective charge of Li ions to be in the range 0.58--0.61, a
value much smaller compared to its nominal value of unity, thereby, suggesting
that the bonding in the material could be partially covalent. We demonstrate
that effective charge computed by Osaka and Shindo is the Szigeti charge, and
once the Born charge is computed, it is in excellent agreement with our
computed value. Mulliken population analysis of LiO also confirms ionic
nature of the bonding in the substance.Comment: 11 pages, 1 figure. To appear in Phys. Rev. B (Feb 2008
Structural Plasticity within the Postsynaptic Density
The postsynaptic density (PSD) is a large protein complex that clusters neurotransmitter receptors at the synapse and organizes the intracellular signaling molecules responsible for altering the efficiency of synaptic transmission – termed synaptic plasticity. We propose that synapses from different parts of the brain place unique demands on the process of synaptic transmission and that the structure and composition of the PSD play a role in providing these distinctive properties. To begin to address this question, PSDs were isolated from adult rat cerebella, hippocampi and cortices, three brain areas amenable to straightforward isolation that contain unique distributions of neuronal cell types. Electron-tomography (ET) was used to visualize the fine morphology of the isolated PSDs and calculate total protein occupancy within the PSD structure. Immunogold labeling was utilized to quantify protein composition and distribution of key signaling and scaffold molecules. Although the mean surface area did not significantly differ between PSD types, the PSD thickness, as measured from Cryo ET reconstructions, differed significantly between PSD types. Labeling densities for PSD-95 and αCaMKII were found to differ dramatically among the PSD types, while all regions had moderate to high labeling for βCaMKII, illustrating the importance of βCaMKII to the PSD structure. PSD-95, a scaffold protein, was absent from a fraction of cerebellar PSDs, unlike hippocampal and cortical PSDs, showing that protein composition varies between PSD types. Ripley's K function analysis of immunogold labeled PSDs showed that PSD-95 was clustered in cerebellar PSDs, unlike other PSD types, suggesting a different function for PSD-95 in cerebellar PSDs. In contrast, βCaMKII was found to have similar non-random organization in all PSD types. These results support the idea that the composition and structure of the PSD are modified to achieve the specific synaptic functions required of each brain region
Relationships between lower-body muscle structure and, lower-body strength, explosiveness and eccentric leg stiffness in adolescent athletes
The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a counter-movement jump (CMJ) and squat jump (SJ), and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23) and female (n = 7) surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg) undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isomet-ric mid-thigh pull (IMTP). In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73) were identified be-tween the thickness of the vastus lateralis (VL) and lateral gas-trocnemius (LG) muscles, and VL pennation angle and; peak force (PF) in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59) were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59) also present with IMTP PF. These results suggest that greater thick-ness of the VL and LG were related to improved maximal dy-namic and isometric strength, likely due to increased hypertro-phy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle
The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia
Fusarium, graminearum is the causal agent of ear blight disease of cereals. Infection occurs at anthesis when ascospores and/or conidia directly penetrate exposed anther and ovary tissue. The hemibiotrophic hyphae colonize floral tissues and developing grains to cause premature ear senescence. During infection, Fusarium hyphae can also produce hazardous trichothecene mycotoxins, thereby posing a threat to human and animal health and safety. The Fusarium MAP1 gene was identified using a PCR approach by its homology to a known pathogenicity gene of Magnaporthe grisea, the mitogen-activated protein kinase gene PMK1. Gene replacement F. graminearum map1 mutants were non-pathogenic on wheat flowers and roots, and also could not infect wounded wheat floral tissue or tomato fruits. Unlike the wild-type strain, map1 mutant inoculations did not compromise grain yield. Map1 mutants lost their ability to form perithecia in vitro, but their rate of asexual conidiation was unaffected. DON mycotoxin production in planta was still detected. Collectively, the observed phenotypes suggest that the Map1 signalling protein controls multiple events in disease establishment and propagation. Novel approaches to control Fusarium ear blight disease by blocking perithecial development are discussed
On the Hadronic Contribution to Light-by-light Scattering in
We comment on the theoretical uncertainties involved in estimating the
hadronic effects on the light-by-light scattering contribution to the anomalous
magnetic moment of the muon, especially based on the analysis and results of T.
Kinoshita, B. Ni\v zi\'c, and Y. Okamoto, Phys.\ Rev.\ D31, 2108 (1985). From
the point of view of an effective field theory and chiral perturbation theory,
we suggest that the charged pion contribution may be better determined than has
been appreciated. However, the neutral pion contribution needs greater
theoretical insight before its magnitude can be reliably estimated.Comment: 9 pages, no figures, U. Michigan UM-TH-93-18. (Input phyzzm to
compile.) Revised version has minor changes in text. To be published in Phys.
Rev. D, Comments sectio
Mn Interstitial Diffusion in (Ga,Mn)As
We present a combined theoretical and experimental study of the ferromagnetic
semiconductor (Ga,Mn)As which explains the remarkably large changes observed on
low temperature annealing. Careful control of the annealing conditions allows
us to obtain samples with ferromagnetic transition temperatures up to 159 K. Ab
initio calculations, and resistivity measurements during annealing, show that
the observed changes are due to out-diffusion of Mn interstitials towards the
surface, governed by an energy barrier of about 0.7-0.8 eV. The Mn interstitial
is a double donor resulting in compensation of charge carriers and suppression
of ferromagnetism. Electric fields induced by high concentrations of
substitutional Mn acceptors have a significant effect on the diffusion.Comment: 5 pages, 4 figures, submitted to Physical Review Letter
The Waiting And Mating Game: Condition Dependent Mate Sampling In Female Gray Treefrogs (Hyla Versicolor)
Strong sexual selection by receivers can lead to the evolution of elaborate courtship behaviors in signalers. However the process by which receivers sample signalers and execute mate choice under complex signaling conditions—and thus the realized strength of sexual section—is poorly understood. Moreover, receivers can vary in condition, which can further influence mate sampling strategies. Using wild female frogs we tested two hypotheses at the intersection of these important problems: that some of the individual variation in mate sampling is explained by (1) the reproductive urgency hypothesis, which predicts that receivers in a more urgent reproductive state will sample mates less and/or (2) the reproductive investment hypothesis, which predicts that receivers that have invested less in the current reproductive effort will sample mates less. Eastern gray treefrogs, Hyla versicolor, were collected in amplexus and repeatedly tested for phonotaxis behavior using a dynamic playback assay. To evaluate if hormonal mechanisms explained variation in the mate sampling, three steroid hormones, estradiol, progesterone, and corticosterone, were collected using a noninvasive water-borne hormone assay, validated for this species in the present study. Finally, we measured clutch size (investment) and the duration of time required for each female to oviposit after being reunited with their male mate (urgency). We found repeatability in many of the behaviors, including mate sampling. We found that females with higher concentrations estradiol and corticosterone made quicker choices, and that females with higher progesterone sampled mates more. We also found that female frogs in a more urgent reproductive state had lower concentrations of progesterone and estradiol, thereby providing the first evidence of a relationship between gonadal hormones and reproductive urgency. Collectively we found some support for the reproductive urgency but not the investment hypothesis. Thus, even though a female frog\u27s reproductive readiness is a highly transient life history stage, fine scale variation in her reproductive timeline could mitigate the strength of directional selection
R-values in Low Energy e^+e^- Annihilation
This presentation briefly summarizes the recent measurements of R-values in
low energy e^+e^- annihilation. The new experiments aimed at reducing the
uncertainties in R-values and performed with the upgraded Beijing Spectrometer
(BESII) at Beijing Electron Positron Collider (BEPC) in Beijing and with CMD-2
and SND at VEEP-2M in Novosibirsk are reviewed and discussed.Comment: 17 pages, 10 figures, invited presentation at the XIX International
Symposium on Lepton and Photon Interactions at High Energy, Stanford
University, August 199
Understanding Terrorist Organizations with a Dynamic Model
Terrorist organizations change over time because of processes such as
recruitment and training as well as counter-terrorism (CT) measures, but the
effects of these processes are typically studied qualitatively and in
separation from each other. Seeking a more quantitative and integrated
understanding, we constructed a simple dynamic model where equations describe
how these processes change an organization's membership. Analysis of the model
yields a number of intuitive as well as novel findings. Most importantly it
becomes possible to predict whether counter-terrorism measures would be
sufficient to defeat the organization. Furthermore, we can prove in general
that an organization would collapse if its strength and its pool of foot
soldiers decline simultaneously. In contrast, a simultaneous decline in its
strength and its pool of leaders is often insufficient and short-termed. These
results and other like them demonstrate the great potential of dynamic models
for informing terrorism scholarship and counter-terrorism policy making.Comment: To appear as Springer Lecture Notes in Computer Science v2:
vectorized 4 figures, fixed two typos, more detailed bibliograph
Improved Term of the Muon Anomalous Magnetic Moment
We have completed the evaluation of all mass-dependent QED
contributions to the muon , or , in two or more different
formulations. Their numerical values have been greatly improved by an extensive
computer calculation. The new value of the dominant term is 132.6823 (72), which supersedes the old value 127.50 (41).
The new value of the three-mass term
is 0.0376 (1). The term is crudely estimated to
be about 0.005 and may be ignored for now. The total QED contribution to
is , where 0.02 and
1.15 are uncertainties in the and terms and 0.85 is from
the uncertainty in measured by atom interferometry. This raises the
Standard Model prediction by , or about 1/5 of the
measurement uncertainty of . It is within the noise of current
uncertainty () in the estimated hadronic
contributions to .Comment: Appendix A has been rewritten extensively. It includes the 4th-order
calculation for illustration. Version accepted by PR
- …