27 research outputs found

    Efficient Non-Viral Ocular Gene Transfer with Compacted DNA Nanoparticles

    Get PDF
    BACKGROUND: The eye is an excellent candidate for gene therapy as it is immune privileged and much of the disease-causing genetics are well understood. Towards this goal, we evaluated the efficiency of compacted DNA nanoparticles as a system for non-viral gene transfer to ocular tissues. The compacted DNA nanoparticles examined here have been shown to be safe and effective in a human clinical trial, have no theoretical limitation on plasmid size, do not provoke immune responses, and can be highly concentrated. METHODS AND FINDINGS: Here we show that these nanoparticles can be targeted to different tissues within the eye by varying the site of injection. Almost all cell types of the eye were capable of transfection by the nanoparticle and produced robust levels of gene expression that were dose-dependent. Most impressively, subretinal delivery of these nanoparticles transfected nearly all of the photoreceptor population and produced expression levels almost equal to that of rod opsin, the highest expressed gene in the retina. CONCLUSIONS: As no deleterious effects on retinal function were observed, this treatment strategy appears to be clinically viable and provides a highly efficient non-viral technology to safely deliver and express nucleic acids in the retina and other ocular tissues

    Annotation and analysis of 10,000 expressed sequence tags from developing mouse eye and adult retina

    Full text link
    Abstract Background As a biomarker of cellular activities, the transcriptome of a specific tissue or cell type during development and disease is of great biomedical interest. We have generated and analyzed 10,000 expressed sequence tags (ESTs) from three mouse eye tissue cDNA libraries: embryonic day 15.5 (M15E) eye, postnatal day 2 (M2PN) eye and adult retina (MRA). Results Annotation of 8,633 non-mitochondrial and non-ribosomal high-quality ESTs revealed that 57% of the sequences represent known genes and 43% are unknown or novel ESTs, with M15E having the highest percentage of novel ESTs. Of these, 2,361 ESTs correspond to 747 unique genes and the remaining 6,272 are represented only once. Phototransduction genes are preferentially identified in MRA, whereas transcripts for cell structure and regulatory proteins are highly expressed in the developing eye. Map locations of human orthologs of known genes uncovered a high density of ocular genes on chromosome 17, and identified 277 genes in the critical regions of 37 retinal disease loci. In silico expression profiling identified 210 genes and/or ESTs over-expressed in the eye; of these, more than 26 are known to have vital retinal function. Comparisons between libraries provided a list of temporally regulated genes and/or ESTs. A few of these were validated by qRT-PCR analysis. Conclusions Our studies present a large number of potentially interesting genes for biological investigation, and the annotated EST set provides a useful resource for microarray and functional genomic studies.http://deepblue.lib.umich.edu/bitstream/2027.42/112906/1/13059_2003_Article_574.pd

    Mouse eye gene microarrays for investigating ocular development and disease

    Get PDF
    AbstractMicroarray technology can facilitate simultaneous expression analysis of thousands of genes and assist in delineating cellular pathways involved in development or disease pathogenesis. Since public databases and commercial cDNA microarrays have an under-representation of eye-expressed genes, we generated over 3000 expressed sequence tags from three unamplified mouse eye/retina cDNA libraries. These eye-expressed genes were used to produce cDNA microarrays. Methodology for printing of slides, hybridization, scanning and data analysis has been optimized. The I-gene microarrays will be useful for establishing expression profiles of the mouse eye/retina and provide a resource for defining molecular pathways involved in development, aging and disease

    Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors

    Get PDF
    It is commonly assumed that photoreceptor (PR) outer segment (OS) morphogenesis is reliant upon the presence of peripherin/rds, hereafter termed Rds. In this study, we demonstrate a differential requirement of Rds during rod and cone OS morphogenesis. In the absence of this PR-specific protein, rods do not form OSs and enter apoptosis, whereas cone PRs develop atypical OSs and are viable. Such OSs consist of dysmorphic membranous structures devoid of lamellae. These tubular OSs lack any stacked lamellae and have reduced phototransduction efficiency. The loss of Rds only appears to affect the shape of the OS, as the inner segment and connecting cilium remain intact. Furthermore, these structures fail to associate with the specialized extracellular matrix that surrounds cones, suggesting that Rds itself or normal OS formation is required for this interaction. This study provides novel insight into the distinct role of Rds in the OS development of rods and cones

    Sustained therapeutic effect of an anti-inflammatory peptide encapsulated in nanoparticles on ocular vascular leakage in diabetic retinopathy

    Get PDF
    Pigment epithelium-derived factor (PEDF), an endogenous Wnt signaling inhibitor in the serine proteinase inhibitors (SERPIN) super family, is present in multiple organs, including the vitreous. Significantly low levels of PEDF in the vitreous are found to associate with pathological retinal vascular leakage and inflammation in diabetic retinopathy (DR). Intravitreal delivery of PEDF represents a promising therapeutic approach for DR. However, PEDF has a short half-life after intravitreal injection, which represents a major hurdle for the long-term treatment. Here we report the prolonged therapeutic effects of a 34-mer peptide of the PEDF N-terminus, encapsulated in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEDF34-NP), on DR. PEDF34-NP inhibited hypoxia-induced expression of vascular endothelial growth factor and reduced levels of intercellular adhesion molecule 1 (ICAM-1) in cultured retinal cells. In addition, PEDF34-NP significantly ameliorated ischemia-induced retinal neovascularization in the oxygen-induced retinopathy rat model, and significantly reduced retinal vascular leakage and inflammation in streptozotocin-induced diabetic rats up to 4 weeks after intravitreal injection, as compared to PLGA-NP control. Intravitreal injection of PEDF34-NP did not display any detectable toxicities to retinal structure and function. Our findings suggest that PEDF34-NP can confer sustained therapeutic effects on retinal inflammation and vascular leakage, having considerable potential to provide long-term treatment options for DR

    Inhibition of Stat3 by a Small Molecule Inhibitor Slows Vision Loss in a Rat Model of Diabetic Retinopathy

    No full text
    PURPOSE. Diabetic retinopathy is a leading cause of vision loss. Previous studies have shown signaling pathways mediated by Stat3 (signal transducer and activator of transcription 3) play a primary role in diabetic retinopathy progression. This study tested CLT-005, a small molecule inhibitor of Stat3, for its dose-dependent therapeutic effects on vision loss in a rat model of diabetic retinopathy. METHODS. Brown Norway rats were administered streptozotocin (STZ) to induce diabetes. CLT-005 was administered daily by oral gavage for 16 weeks at concentrations of 125, 250, or 500 mg/kg, respectively, beginning 4 days post streptozotocin administration. Systemic and ocular drug concentration was quantified with mass spectrometry. Visual function was monitored at 2-week intervals from 6 to 16 weeks using optokinetic tracking to measure visual acuity and contrast sensitivity. The presence and severity of cataracts was visually monitored and correlated to visual acuity. The transcription and translation of multiple angiogenic factors and inflammatory cytokines were measured by real-time polymerase chain reaction and Multiplex immunoassay. RESULTS. Streptozotocin-diabetic rats sustain progressive vision loss over 16 weeks, and this loss in visual function is rescued in a dose-dependent manner by CLT-005. This positive therapeutic effect correlates to the positive effects of CLT-005 on vascular leakage and the presence of inflammatory cytokines in the retina. CONCLUSIONS. The present study indicates that Stat3 inhibition has strong therapeutic potential for the treatment of vision loss in diabetic retinopathy
    corecore