15 research outputs found
Surgical Management of Lumbar Spine Fractures and Dislocations
Background: Lumbar spine fractures and dislocations, which are part of the thoracolumbar region, are critical injuries with significant morbidity. The epidemiological shift in the median age of injury and the high prevalence of these injuries, particularly in the T10-L2 region, highlight the necessity for effective therapeutic interventions. With advancements in spine biomechanics, imaging technologies, and surgical techniques, there has been a paradigm shift from conservative to surgical management, though high-quality comparative studies remain limited. Objective: To synthesize recent data on the epidemiology, evaluation, and management of lumbar spine fractures and dislocations, and to elucidate the comparative efficacy of surgical interventions and conservative approaches in optimizing patient outcomes. Method: This paper conducts a comprehensive review of epidemiological data on thoracolumbar traumatic injuries, diagnostic techniques, and management strategies, especially focusing on surgical interventions. The review also details specific surgical techniques utilized for lumbar spine fractures and their underlying rationale. Findings and Conclusion: Thoracolumbar injuries primarily affect the transitional zone (T11-L2) and show a higher incidence in males aged between 20 and 40. Imaging, especially CT scans, offers a definitive diagnostic approach, with MRI providing insights on soft tissue interactions. While historically, conservative methods dominated therapeutic interventions, surgical techniques, including Posterior Instrumentation, Anterior Lumbar Interbody Fusion (ALIF), Transforaminal Lumbar Interbody Fusion (TLIF), and Posterior Lumbar Interbody Fusion (PLIF), are increasingly being utilized. Some specific fractures even warrant a combined posterior-anterior surgical approach. Notably, certain case studies highlight the potential for superior outcomes with surgical intervention, even in the absence of neurological deficits. Selecting the appropriate management strategy should be tailored to individual patient factors, nature of the injury, and available expertise and resources
Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050. Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity. Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels. Funding: Bill & Melinda Gates Foundation
Global, regional, and national prevalence of adult overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Background: Overweight and obesity is a global epidemic. Forecasting future trajectories of the epidemic is crucial for providing an evidence base for policy change. In this study, we examine the historical trends of the global, regional, and national prevalence of adult overweight and obesity from 1990 to 2021 and forecast the future trajectories to 2050.
Methods: Leveraging established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study, we estimated the prevalence of overweight and obesity among individuals aged 25 years and older by age and sex for 204 countries and territories from 1990 to 2050. Retrospective and current prevalence trends were derived based on both self-reported and measured anthropometric data extracted from 1350 unique sources, which include survey microdata and reports, as well as published literature. Specific adjustment was applied to correct for self-report bias. Spatiotemporal Gaussian process regression models were used to synthesise data, leveraging both spatial and temporal correlation in epidemiological trends, to optimise the comparability of results across time and geographies. To generate forecast estimates, we used forecasts of the Socio-demographic Index and temporal correlation patterns presented as annualised rate of change to inform future trajectories. We considered a reference scenario assuming the continuation of historical trends. Findings: Rates of overweight and obesity increased at the global and regional levels, and in all nations, between 1990 and 2021. In 2021, an estimated 1·00 billion (95% uncertainty interval [UI] 0·989–1·01) adult males and 1·11 billion (1·10–1·12) adult females had overweight and obesity. China had the largest population of adults with overweight and obesity (402 million [397–407] individuals), followed by India (180 million [167–194]) and the USA (172 million [169–174]). The highest age-standardised prevalence of overweight and obesity was observed in countries in Oceania and north Africa and the Middle East, with many of these countries reporting prevalence of more than 80% in adults. Compared with 1990, the global prevalence of obesity had increased by 155·1% (149·8–160·3) in males and 104·9% (95% UI 100·9–108·8) in females. The most rapid rise in obesity prevalence was observed in the north Africa and the Middle East super-region, where age-standardised prevalence rates in males more than tripled and in females more than doubled. Assuming the continuation of historical trends, by 2050, we forecast that the total number of adults living with overweight and obesity will reach 3·80 billion (95% UI 3·39–4·04), over half of the likely global adult population at that time. While China, India, and the USA will continue to constitute a large proportion of the global population with overweight and obesity, the number in the sub-Saharan Africa super-region is forecasted to increase by 254·8% (234·4–269·5). In Nigeria specifically, the number of adults with overweight and obesity is forecasted to rise to 141 million (121–162) by 2050, making it the country with the fourth-largest population with overweight and obesity.
Interpretation: No country to date has successfully curbed the rising rates of adult overweight and obesity. Without immediate and effective intervention, overweight and obesity will continue to increase globally. Particularly in Asia and Africa, driven by growing populations, the number of individuals with overweight and obesity is forecast to rise substantially. These regions will face a considerable increase in obesity-related disease burden. Merely acknowledging obesity as a global health issue would be negligent on the part of global health and public health practitioners; more aggressive and targeted measures are required to address this crisis, as obesity is one of the foremost avertible risks to health now and in the future and poses an unparalleled threat of premature disease and death at local, national, and global levels.
Funding: Bill & Melinda Gates Foundation
Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Background: Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. Methods: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. Findings: Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America. Interpretation: Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis. Funding: Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council
The global, regional, and national burden of cancer, 1990–2023, with forecasts to 2050:a systematic analysis for the Global Burden of Disease Study 2023
Background: Cancer is a leading cause of death globally. Accurate cancer burden information is crucial for policy planning, but many countries do not have up-to-date cancer surveillance data. To inform global cancer-control efforts, we used the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2023 framework to generate and analyse estimates of cancer burden for 47 cancer types or groupings by age, sex, and 204 countries and territories from 1990 to 2023, cancer burden attributable to selected risk factors from 1990 to 2023, and forecasted cancer burden up to 2050. Methods: Cancer estimation in GBD 2023 used data from population-based cancer registration systems, vital registration systems, and verbal autopsies. Cancer mortality was estimated using ensemble models, with incidence informed by mortality estimates and mortality-to-incidence ratios (MIRs). Prevalence estimates were generated from modelled survival estimates, then multiplied by disability weights to estimate years lived with disability (YLDs). Years of life lost (YLLs) were estimated by multiplying age-specific cancer deaths by the GBD standard life expectancy at the age of death. Disability-adjusted life-years (DALYs) were calculated as the sum of YLLs and YLDs. We used the GBD 2023 comparative risk assessment framework to estimate cancer burden attributable to 44 behavioural, environmental and occupational, and metabolic risk factors. To forecast cancer burden from 2024 to 2050, we used the GBD 2023 forecasting framework, which included forecasts of relevant risk factor exposures and used Socio-demographic Index as a covariate for forecasting the proportion of each cancer not affected by these risk factors. Progress towards the UN Sustainable Development Goal (SDG) target 3.4 aim to reduce non-communicable disease mortality by a third between 2015 and 2030 was estimated for cancer. Findings: In 2023, excluding non-melanoma skin cancers, there were 18·5 million (95% uncertainty interval 16·4 to 20·7) incident cases of cancer and 10·4 million (9·65 to 10·9) deaths, contributing to 271 million (255 to 285) DALYs globally. Of these, 57·9% (56·1 to 59·8) of incident cases and 65·8% (64·3 to 67·6) of cancer deaths occurred in low-income to upper-middle-income countries based on World Bank income group classifications. Cancer was the second leading cause of deaths globally in 2023 after cardiovascular diseases. There were 4·33 million (3·85 to 4·78) risk-attributable cancer deaths globally in 2023, comprising 41·7% (37·8 to 45·4) of all cancer deaths. Risk-attributable cancer deaths increased by 72·3% (57·1 to 86·8) from 1990 to 2023, whereas overall global cancer deaths increased by 74·3% (62·2 to 86·2) over the same period. The reference forecasts (the most likely future) estimate that in 2050 there will be 30·5 million (22·9 to 38·9) cases and 18·6 million (15·6 to 21·5) deaths from cancer globally, 60·7% (41·9 to 80·6) and 74·5% (50·1 to 104·2) increases from 2024, respectively. These forecasted increases in deaths are greater in low-income and middle-income countries (90·6% [61·0 to 127·0]) compared with high-income countries (42·8% [28·3 to 58·6]). Most of these increases are likely due to demographic changes, as age-standardised death rates are forecast to change by –5·6% (–12·8 to 4·6) between 2024 and 2050 globally. Between 2015 and 2030, the probability of dying due to cancer between the ages of 30 years and 70 years was forecasted to have a relative decrease of 6·5% (3·2 to 10·3). Interpretation: Cancer is a major contributor to global disease burden, with increasing numbers of cases and deaths forecasted up to 2050 and a disproportionate growth in burden in countries with scarce resources. The decline in age-standardised mortality rates from cancer is encouraging but insufficient to meet the SDG target set for 2030. Effectively and sustainably addressing cancer burden globally will require comprehensive national and international efforts that consider health systems and context in the development and implementation of cancer-control strategies across the continuum of prevention, diagnosis, and treatment. Funding: Gates Foundation, St Jude Children's Research Hospital, and St Baldrick's Foundation.</p
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study
We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05-1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4-7 days or >= 8 days of 1.25 (1.04-1.48), p = 0.015 and 1.31 (1.11-1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Background
Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions.
Methods
Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage.
Findings
Between 1990 and 2021, the combined prevalence of overweight and obesity in children and adolescents doubled, and that of obesity alone tripled. By 2021, 93·1 million (95% uncertainty interval 89·6–96·6) individuals aged 5–14 years and 80·6 million (78·2–83·3) aged 15–24 years had obesity. At the super-region level in 2021, the prevalence of overweight and of obesity was highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and the greatest increase from 1990 to 2021 was seen in southeast Asia, east Asia, and Oceania (eg, Taiwan [province of China], Maldives, and China). By 2021, for females in both age groups, many countries in Australasia (eg, Australia) and in high-income North America (eg, Canada) had already transitioned to obesity predominance, as had males and females in a number of countries in north Africa and the Middle East (eg, United Arab Emirates and Qatar) and Oceania (eg, Cook Islands and American Samoa). From 2022 to 2050, global increases in overweight (not obesity) prevalence are forecasted to stabilise, yet the increase in the absolute proportion of the global population with obesity is forecasted to be greater than between 1990 and 2021, with substantial increases forecast between 2022 and 2030, which continue between 2031 and 2050. By 2050, super-region obesity prevalence is forecasted to remain highest in north Africa and the Middle East (eg, United Arab Emirates and Kuwait), and forecasted increases in obesity are still expected to be largest across southeast Asia, east Asia, and Oceania (eg, Timor-Leste and North Korea), but also in south Asia (eg, Nepal and Bangladesh). Compared with those aged 15–24 years, in most super-regions (except Latin America and the Caribbean and the high-income super-region) a greater proportion of those aged 5–14 years are forecasted to have obesity than overweight by 2050. Globally, 15·6% (12·7–17·2) of those aged 5–14 years are forecasted to have obesity by 2050 (186 million [141–221]), compared with 14·2% (11·4–15·7) of those aged 15–24 years (175 million [136–203]). We forecasted that by 2050, there will be more young males (aged 5–14 years) living with obesity (16·5% [13·3–18·3]) than overweight (12·9% [12·2–13·6]); while for females (aged 5–24 years) and older males (aged 15–24 years), overweight will remain more prevalent than obesity. At a regional level, the following populations are forecast to have transitioned to obesity (vs overweight) predominance before 2041–50: children and adolescents (males and females aged 5–24 years) in north Africa and the Middle East and Tropical Latin America; males aged 5–14 years in east Asia, central and southern sub-Saharan Africa, and central Latin America; females aged 5–14 years in Australasia; females aged 15–24 years in Australasia, high-income North America, and southern sub-Saharan Africa; and males aged 15–24 years in high-income North America.
Interpretation
Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis.
Funding
Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study
Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021
Recommended from our members
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study an international prospective cohort study
We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05–1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4–7 days or ≥ 8 days of 1.25 (1.04–1.48), p = 0.015 and 1.31 (1.11–1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care. We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05–1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4–7 days or ≥ 8 days of 1.25 (1.04–1.48), p = 0.015 and 1.31 (1.11–1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care
