2 research outputs found

    Gag-protease driven viral replication capacity among HIV-1 subtypes: Implications for disease progression, epidemic spread and vaccine design.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The HIV-1 epidemic in sub-Saharan Africa is heterogeneous with diverse unevenly distributed subtypes and regional differences in prevalence. Subtype-specific differences in disease progression rate and transmission efficiency have been reported, but the underlying biological mechanisms have not been fully characterized. In this study, I tested the hypothesis that the subtypes prevalent in the East African epidemic, where adult prevalence rate is higher, have lower viral replication capacity (VRC) than their West African counterparts where adult prevalence rates are lower. Materials and methods: Gag-protease sequencing was performed on plasma samples from 213 and 160 antiretroviralnaïve participants from West and East Africa, respectively. Online bioinformatic tools were used to infer HIV-1 subtypes and recombination patterns. Replication capacities of patientderived gag-protease chimeric viruses from West (n=178) and East (n=114) Africa were determined using a green fluorescent protein reporter-based cell assay. Subtype and regional differences in viral replication capacity and amino acid variants impacting replication capacity were identified using appropriate statistical methods. Results: Subtypes identified in West Africa were CRF02_AG (65%, n=139), G (7%, n=15), A3 (5%, n=10), other CRFs (12%, n=26), various pure subtypes (9%, n=19) and A1G recombinants (2%, n=4). Subtypes A1 (64%, n=103), D (22%, n=35), AD (11%, n=17) and AC (3%, n=5) were identified in East Africa. Chimeric viruses from West Africa had significantly higher VRC compared to those from East Africa (p < 0.0001), with subtype-specific differences found among strains within West and East Africa (p < 0.0001). Recombination patterns showed a preference for subtypes D, G or J rather than subtype A in the p6 region of gag, with evidence that subtype-specific differences in this region impact viral replication capacity. Furthermore, the Gag A83V polymorphism was associated with reduced viral replication capacity in CRF02_AG (median < 0.86). HLA-A*23:01 (p = 0.0014) and HLA-C*07:01 (p = 0.002) were associated with significantly lower viral replication capacity in subtype A infected individuals from East Africa. Conclusion: Overall, the data showed that viruses from West Africa displayed higher replication capacity than those from East Africa, which is consistent with the hypothesis that lower viral replication capacity is associated with higher population prevalence.Author's keywords: HIV-1 subtypes, Viral replication capacity, Sub-Saharan Africa, Circulating recombinant form, HLA

    Subtype-specific differences in Gag-protease replication capacity of HIV-1 isolates from East and West Africa

    Get PDF
    Abstract Background The HIV-1 epidemic in sub-Saharan Africa is heterogeneous with diverse unevenly distributed subtypes and regional differences in prevalence. Subtype-specific differences in disease progression rate and transmission efficiency have been reported, but the underlying biological mechanisms have not been fully characterized. Here, we tested the hypothesis that the subtypes prevalent in the East Africa, where adult prevalence rate is higher, have lower viral replication capacity (VRC) than their West African counterparts where adult prevalence rates are lower. Results Gag-protease sequencing was performed on 213 and 160 antiretroviral-naïve chronically infected participants from West and East Africa respectively and bioinformatic tools were used to infer subtypes and recombination patterns. VRC of patient-derived gag-protease chimeric viruses from West (n = 178) and East (n = 114) Africa were determined using a green fluorescent protein reporter-based cell assay. Subtype and regional differences in VRC and amino acid variants impacting VRC were identified by statistical methods. CRF02_AG (65%, n = 139), other recombinants (14%, n = 30) and pure subtypes (21%, n = 44) were identified in West Africa. Subtypes A1 (64%, n = 103), D (22%, n = 35), or recombinants (14%, n = 22) were identified in East Africa. Viruses from West Africa had significantly higher VRC compared to those from East Africa (p < 0.0001), with subtype-specific differences found among strains within West and East Africa (p < 0.0001). Recombination patterns showed a preference for subtypes D, G or J rather than subtype A in the p6 region of gag, with evidence that subtype-specific differences in this region impact VRC. Furthermore, the Gag A83V polymorphism was associated with reduced VRC in CRF02_AG. HLA-A*23:01 (p = 0.0014) and HLA-C*07:01 (p = 0.002) were associated with lower VRC in subtype A infected individuals from East Africa. Conclusions Although prevalent viruses from West Africa displayed higher VRC than those from East Africa consistent with the hypothesis that lower VRC is associated with higher population prevalence, the predominant CRF02_AG strain in West Africa displayed higher VRC than other prevalent strains suggesting that VRC alone does not explain population prevalence. The study identified viral and host genetic determinants of virus replication capacity for HIV-1 CRF02_AG and subtype A respectively, which may have relevance for vaccine strategies
    corecore