16 research outputs found

    Intracranial Aneurysms: Review of Current Treatment Options and Outcomes

    Get PDF
    Intracranial aneurysms are present in roughly 5% of the population, yet most are often asymptomatic and never detected. Development of an aneurysm typically occurs during adulthood, while formation and growth are associated with risk factors such as age, hypertension, pre-existing familial conditions, and smoking. Subarachnoid hemorrhage, the most common presentation due to aneurysm rupture, represents a serious medical condition often leading to severe neurological deficit or death. Recent technological advances in imaging modalities, along with increased understanding of natural history and prevalence of aneurysms, have increased detection of asymptomatic unruptured intracranial aneurysms (UIA). Studies reporting on the risk of rupture and outcomes have provided much insight, but the debate remains of how and when unruptured aneurysms should be managed. Treatment methods include two major intervention options: clipping of the aneurysm and endovascular methods such as coiling, stent-assisted coiling, and flow diversion stents. The studies reviewed here support the generalized notion that endovascular treatment of UIA provides a safe and effective alternative to surgical treatment. The risks associated with endovascular repair are lower and incur shorter hospital stays for appropriately selected patients. The endovascular treatment option should be considered based on factors such as aneurysm size, location, patient medical history, and operator experience

    Therapeutic Hypothermia in Stroke and Traumatic Brain Injury

    Get PDF
    Therapeutic hypothermia (TH) is considered to improve survival with favorable neurological outcome in the case of global cerebral ischemia after cardiac arrest and perinatal asphyxia. The efficacy of hypothermia in acute ischemic stroke (AIS) and traumatic brain injury (TBI), however, is not well studied. Induction of TH typically requires a multimodal approach, including the use of both pharmacological agents and physical techniques. To date, clinical outcomes for patients with either AIS or TBI who received TH have yielded conflicting results; thus, no adequate therapeutic consensus has been reached. Nevertheless, it seems that by determining optimal TH parameters and also appropriate applications, cooling therapy still has the potential to become a valuable neuroprotective intervention. Among the various methods for hypothermia induction, intravascular cooling (IVC) may have the most promise in the awake patient in terms of clinical outcomes. Currently, the IVC method has the capability of more rapid target temperature attainment and more precise control of temperature. However, this technique requires expertise in endovascular surgery that can preclude its application in the field and/or in most emergency settings. It is very likely that combining neuroprotective strategies will yield better outcomes than utilizing a single approach

    Evaluation of the modified HTK solution in pancreas transplantationdAn experimental model

    Get PDF
    One of the great challenges in pancreas transplantation is the ischemia reperfusion injury. It is mentioned that free oxygen and/or nitrogen radicals play a prominent role in this phase. To minimize this problem, a modified histidineetryptophan eketoglutarate (HTK) solution that contains modified antioxidants has been developed. Our aim was to evaluate this solution in improving the viability of the pancreas in comparison with standard HTK and University of Wisconsin (UW) solutions in a porcine model of pancreas transplantation

    Influence of a modified preservation solution in kidney transplantation: A comparative experimental study in a porcine model

    No full text
    Currently, due to lack of optimal donors, more marginal organs are transplanted. Therefore, there is a high interest to ameliorate preischemic organ preservation, especially for critical donor organs. In this regard, a new histidine-tryptophane ketoglutarate (HTK-N) solution has been designed and its protective efficacy was compared with the standard preservation solutions—University of Wisconsin solution and standard HTK or Custodiol (Bretschneiders solution). Seventy-two landrace pigs were included into the study, as donors and recipients. The donor kidneys were perfused during explantation with cold University of Wisconsin solution (n = 12), standard HTK (n = 12), or HTK-N solutions (n = 12), kept in the respective preservation solution at 4°C for 30 hours, implanted in the recipient pigs, and reperfused. The pigs survived in daily control for 7 days. The serum creatinine and blood urea nitrogen were assessed in pre- and postreperfusion phase on the 3rd day and 7th day posttransplantation. Additionally, tissue samples were taken to analyze the histopathological degree of tubular injury and regeneration before and after reperfusion. The three preservation groups were comparable in age, body weight, and hemodynamic parameters. According to statistical proof, they differed in none of the control parameters. Although the new preservation HTK solution is in several points a well-thought-out modification of the standard HTK solution, its preservation efficacy, at least for kidney preservation in a pig model for 30 hours, seems to be comparable to the current used solutions. A real advantage, however, could be confirmed in clinical settings, where marginal organs may influence the clinical outcome

    Serum programmed cell death proteins in amyotrophic lateral sclerosis

    No full text
    Amyotrophic lateral sclerosis (ALS) is a multifactorial, multisystem pro-inflammatory neuromuscular disorder. Activation of programmed cell death-1 (PD-1), and its ligands, programmed cell death-ligand 1 and 2 (PD-L1/L2), leads to immune suppression. Serum soluble forms of these proteins, sPD-1/sPD-L1/sPD-L2, inhibit this suppression and promote pro-inflammatory responses. The purpose of this study was to determine if sPD-1, sPD-L1, and sPD-L2 were increased in sera of patients with ALS. sPD-1 and sPD-L2 were elevated in sera of patients and accurately reflected patients’ disease burdens. Increased sera levels of programmed cell death proteins reinforce the concept that peripheral pro-inflammatory responses contribute to systemic inflammation in patients with ALS

    Influence of a modified preservation solution in kidney transplantation: A comparative experimental study in a porcine model

    Get PDF
    Currently, due to lack of optimal donors, more marginal organs are transplanted. Therefore, there is a high interest to ameliorate preischemic organ preservation, especially for critical donor organs. In this regard, a new histidinetryptophane ketoglutarate (HTK-N) solution has been designed and its protective efficacy was compared with the standard preservation solutionsdUniversity of Wisconsin solution and standard HTK or Custodiol (Bretschneider’s solution). Methods: Seventy-two landrace pigs were included into the study, as donors and recipients. The donor kidneys were perfused during explantation with cold University of Wisconsin solution (n Z 12), standard HTK (n Z 12), or HTK-N solutions (n Z 12), kept in the respective preservation solution at 4 C for 30 hours, implanted in the recipient pigs, and reperfused. The pigs survived in daily control for 7 days. The serum creatinine and blood urea nitrogen were assessed in pre- and postreperfusion phase on the 3rd day and 7th day posttransplantation. Additionally, tissue samples were taken to analyze the histopathological degree of tubular injury and regeneration before and after reperfusion

    Functional alterations of myeloid cells during the course of Alzheimer’s disease

    No full text
    Abstract Background Neuroinflammation is a hallmark of neurodegenerative disease and a significant component of the pathology of Alzheimer’s disease (AD). Patients present with extensive microgliosis along with elevated pro-inflammatory signaling in the central nervous system and periphery. However, the role of peripheral myeloid cells in mediating and influencing AD pathogenesis remains unresolved. Methods Peripheral myeloid cells were isolated from peripheral blood of patients with prodromal AD (n = 44), mild AD dementia (n = 25), moderate/severe AD dementia (n = 28), and age-matched controls (n = 54). Patients were evaluated in the clinic for AD severity and categorized using Clinical Dementia Rating (CDR) scale resulting in separation of patients into prodromal AD (CDR0.5) and advancing forms of AD dementia (mild-CDR1 and moderate/severe-CDR2/3). Separation of peripheral myeloid cells into mature monocytes or immature MDSCs permitted the delineation of population changes from flow cytometric analysis, RNA phenotype analysis, and functional studies using T cell suppression assays and monocyte suppression assays. Results During stages of AD dementia (CDR1 and 2/3) peripheral myeloid cells increase their pro-inflammatory gene expression while at early stages of disease (prodromal AD—CDR0.5) pro-inflammatory gene expression is decreased. MDSCs are increased in prodromal AD compared with controls (16.81% vs 9.53%) and have markedly increased suppressive functions: 42.4% suppression of activated monocyte-produced IL-6 and 78.16% suppression of T cell proliferation. In AD dementia, MDSC populations are reduced with decreased suppression of monocyte IL-6 (5.22%) and T cell proliferation (37.61%); the reduced suppression coincides with increased pro-inflammatory signaling in AD dementia monocytes. Conclusions Peripheral monocyte gene expression is pro-inflammatory throughout the course of AD, except at the earliest, prodromal stages when pro-inflammatory gene expression is suppressed. This monocyte biphasic response is associated with increased numbers and suppressive functions of MDSCs during the early stages and decreased numbers and suppressive functions in later stages of disease. Prolonging the early protective suppression and reversing the later loss of suppressive activity may offer a novel therapeutic strategy

    Evaluation of the modified HTK solution in pancreas transplantation—An experimental model

    No full text
    One of the great challenges in pancreas transplantation is the ischemia reperfusion injury. It is mentioned that free oxygen and/or nitrogen radicals play a prominent role in this phase. To minimize this problem, a modified histidine–tryptophan–ketoglutarate (HTK) solution that contains modified antioxidants has been developed. Our aim was to evaluate this solution in improving the viability of the pancreas in comparison with standard HTK and University of Wisconsin (UW) solutions in a porcine model of pancreas transplantation. Twenty-three Landrace pigs were divided into three identical groups. After a 10-hour preservation time at 4°C, the pancreas was implanted in the organs of the recipients in a standardized manner. Serum parameters were assessed prior to and after implantation on the 1st postoperative day, 3rd postoperative day, and 7th postoperative day. Furthermore, three biopsies were taken: prior to and after reperfusion, and on Day 7 to assess the grafts. An analysis of serum glucose among the three groups showed no significant differences. Evaluation of the insulin levels showed no significant difference between the modified and standard HTK groups, however, differences between HTK and UW were significant (p = 0.004 in favor of UW solutions). The histopathological results showed a trend of a higher grade of rejection of pancreas tissue in the UW group compared to both HTK groups. The modified HTK solution could preserve the pancreas for the preservation of the graft with similar results to those observed for standard solutions without any significant difference. The trend showed that the pathological finding in the UW group was not as good as that in the modified HTK and standard HTK groups
    corecore