16 research outputs found

    Molecular aspects of plant redox metabolism

    No full text

    Co-occurrence of the Multicopper Oxidases Tyrosinase and Laccase in Lichens in Sub-order Peltigerineae

    No full text
    • Background and Aims Following previous findings of high extracellular redox activity in lichens and the presence of laccases in lichen cell walls, the work presented here additionally demonstrates the presence of tyrosinases. Tests were made for the presence of tyrosinases in 40 species of lichens, and from selected species their cellular location and molecular weights were determined. The effects of stress and inhibitors on enzyme activity were also studied

    Melanins from the Lichens Lobaria pulmonaria and Lobaria retigera as Eco-Friendly Adsorbents of Synthetic Dyes

    No full text
    Synthetic dyes are widely used in the industry; they are chemically stable, difficult to neutralize, and therefore they are a threat to the environment when released into wastewaters. The dyes have a significant impact on plant performance by impairing photosynthesis, inhibiting growth, and entering the food chain and may finally result in the toxicity, mutagenicity and carcinogenicity of food products. Implementation of the dark piment melanin for the adsorption of the synthetic dyes is a new ecologically friendly approach for bioremediation. The aim of the present work was to study the physico-chemical characteristics of melanins from the lichens Lobaria pulmonaria and Lobaria retigera, analyze their adsorption/desorption capacities towards synthetic dyes, and assess the capacity of melanins to mitigate toxicity of the dyes for a common soil bacterium Bacillus subtilis. Unique chelating properties of melanins determine the perspectives of the use of these high molecular weight polymers for detoxification of xenobiotics

    Melanisation in Boreal Lichens Is Accompanied by Variable Changes in Non-Photochemical Quenching

    No full text
    Lichens often grow in microhabitats where they absorb more light than they can use for fixing carbon, and this excess energy can cause the formation of harmful reactive oxygen species (ROS). Lichen mycobionts can reduce ROS formation by synthesizing light-screening pigments such as melanins in the upper cortex, while the photobionts can dissipate excess energy radiationlessly using non-photochemical quenching (NPQ). An inherent problem with using fluorimetry techniques to compare NPQ in pale and melanised thalli is that NPQ is normally measured through a variously pigmented upper cortex. Here we used a dissection technique to remove the lower cortices and medullas of Lobaria pulmonaria and Crocodia aurata and then measure NPQ from the underside of the thallus. Results confirmed that NPQ can be satisfactorily assessed with a standard fluorimeter by taking measurement from above using intact thalli. However, photobionts from the bottom of the photobiont layer tend to have slightly lower rates of PSII activity and lower NPQ than those at the top, i.e., display mild “shade” characteristics. Analysis of pale and melanised thalli of other species indicates that NPQ in melanised thalli can be higher, similar or lower than pale thalli, probably depending on the light history of the microhabitat and presence of other tolerance mechanisms

    <i>DsDBF1</i>, a Type A-5 DREB Gene, Identified and Characterized in the Moss <i>Dicranum scoparium</i>

    No full text
    Plant dehydration-responsive element binding (DREB) transcription factors (TFs) play important roles during stress tolerance by regulating the expression of numerous genes involved in stresses. DREB TFs have been extensively studied in a variety of angiosperms and bryophytes. To date, no information on the identification and characterization of DREB TFs in Dicranum scoparium has been reported. In this study, a new DBF1 gene from D. scoparium was identified by cloning and sequencing. Analysis of the conserved domain and physicochemical properties revealed that DsDBF1 protein has a classic AP2 domain encoding a 238 amino acid polypeptide with a molecular mass of 26 kDa and a pI of 5.98. Subcellular prediction suggested that DsDBF1 is a nuclear and cytoplasmic protein. Phylogenetic analysis showed that DsDBF1 belongs to group A-5 DREBs. Expression analysis by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) revealed that DsDBF1 was significantly upregulated in response to abiotic stresses such as desiccation/rehydration, exposure to paraquat, CdCl2, high and freezing temperatures. Taken together, our data suggest that DsDBF1 could be a promising gene candidate to improve stress tolerance in crop plants, and the characterization of TFs of a stress tolerant moss such as D. scoparium provides a better understanding of plant adaptation mechanisms

    Nitric Oxide Induces Autophagy in <i>Triticum aestivum</i> Roots

    No full text
    Autophagy is a highly conserved process that degrades damaged macromolecules and organelles. Unlike animals, only scant information is available regarding nitric oxide (NO)-induced autophagy in plants. Such lack of information prompted us to study the roles of the NO donors’ nitrate, nitrite, and sodium nitroprusside in this catabolic process in wheat roots. Furthermore, spermine, a polyamine that is found in all eukaryotic cells, was also tested as a physiological NO donor. Here, we show that in wheat roots, NO donors and spermine can trigger autophagy, with NO and reactive oxygen species (ROS) playing signaling roles based on the visualization of autophagosomes, analyses of the levels of NO, ROS, mitochondrial activity, and the expression of autophagic (ATG) genes. Treatment with nitrite and nitroprusside causes an energy deficit, a typical prerequisite of autophagy, which is indicated by a fall in mitochondrial potential, and the activity of mitochondrial complexes. On the contrary, spermine sustains energy metabolism by upregulating the activity of appropriate genes, including those that encode glyceraldehyde 3-phosphate dehydrogenase GAPDH and SNF1-related protein kinase 1 SnRK1. Taken together, our data suggest that one of the key roles for NO in plants may be to trigger autophagy via diverse mechanisms, thus facilitating the removal of oxidized and damaged cellular constituencies
    corecore