3,459 research outputs found
Hadronic current correlation functions at finite temperature in the NJL model
Recently there have been suggestions that for a proper description of
hadronic matter and hadronic correlation functions within the NJL model at
finite density/temperature the parameters of the model should be taken
density/temperature dependent. Here we show that qualitatively similar results
can be obtained using a cutoff-independent regularization of the NJL model. In
this regularization scheme one can express the divergent parts at finite
density/temperature of the amplitudes in terms of their counterparts in vacuum.Comment: Presented at 9th Hadron Physics and 8th Relativistic Aspects of
Nuclear Physics (HADRON-RANP 2004): A Joint Meeting on QCD and QGP, Angra dos
Reis, Rio de Janeiro, Brazil, 28 Mar - 3 Apr 200
Cutoff-independent regularization of four-fermion interactions for color superconductivity
We implement a cutoff-independent regularization of four-fermion interactions
to calculate the color-superconducting gap parameter in quark matter. The
traditional cutoff regularization has difficulties for chemical potentials \mu
of the order of the cutoff \Lambda, predicting in particular a vanishing gap at
\mu \sim \Lambda. The proposed cutoff-independent regularization predicts a
finite gap at high densities and indicates a smooth matching with the weak
coupling QCD prediction for the gap at asymptotically high densities.Comment: 5 pages, 1 eps figure - Revised manuscript to match the published
pape
A comparison of unit root test criteria
During the past fifteen years, the ordinary least squares estimator and the corresponding pivotal statistic have been widely used for testing the unit root hypothesis in autoregressive processes. Recently, several new criteriia, based on the maximum likelihood estimators and weighted symmetric estimators, have been proposed. In this article, we describe several different test criteria. Results from a Monte Carlo study that compares the power of the different criteria indicates that the new tests are more powerful against the stationary alternative. Of the procedures studied, the weighted symmetric estimator and the unconditional maximum likelihood estimator provide the most powerful tests against the stationary alternative. As an illustration, we analyze the quarterly change in busine;ss investories
Dielectric mismatch and shallow donor impurities in GaN/HfO2 quantum wells
In this work we investigate electron-impurity binding energy in GaN/HfO
quantum wells. The calculation considers simultaneously all energy
contributions caused by the dielectric mismatch: (i) image self-energy (i.e.,
interaction between electron and its image charge), (ii) the direct Coulomb
interaction between the electron-impurity and (iii) the interactions among
electron and impurity image charges. The theoretical model account for the
solution of the time-dependent Schr\"odinger equation and the results shows how
the magnitude of the electron-impurity binding energy depends on the position
of impurity in the well-barrier system. The role of the large dielectric
constant in the barrier region is exposed with the comparison of the results
for GaN/HfO with those of a more typical GaN/AlN system, for two different
confinement regimes: narrow and wide quantum wells.Comment: 6 Pages, 7 figure
The split-operator technique for the study of spinorial wavepacket dynamics
The split-operator technique for wave packet propagation in quantum systems
is expanded here to the case of propagating wave functions describing
Schr\"odinger particles, namely, charge carriers in semiconductor
nanostructures within the effective mass approximation, in the presence of
Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We
also demonstrate that simple modifications to the expanded technique allow us
to calculate the time evolution of wave packets describing Dirac particles,
which are relevant for the study of transport properties in graphene.Comment: 19 pages, 4 figure
- …