8,052 research outputs found
Theory of weakly nonlinear self sustained detonations
We propose a theory of weakly nonlinear multi-dimensional self sustained
detonations based on asymptotic analysis of the reactive compressible
Navier-Stokes equations. We show that these equations can be reduced to a model
consisting of a forced, unsteady, small disturbance, transonic equation and a
rate equation for the heat release. In one spatial dimension, the model
simplifies to a forced Burgers equation. Through analysis, numerical
calculations and comparison with the reactive Euler equations, the model is
demonstrated to capture such essential dynamical characteristics of detonations
as the steady-state structure, the linear stability spectrum, the
period-doubling sequence of bifurcations and chaos in one-dimensional
detonations and cellular structures in multi- dimensional detonations
Recommended from our members
Analytical treatment of stabilization
We present a summarizing account of a series of investigations whose central topic is to address the question whether atomic stabilization exists in an analytical way. We provide new aspects on several issues of the matter in the theoretical context when the dynamics is described by the Stark Hamiltonian. The main outcome of these studies is that the governing parameters for this phenomenon are the total classical momentum transfer and the total classical displacement. Whenever these two quantities vanish, asymptotically weak stabilization does exist. For all other situations we did not find any evidence for stabilization. We found no evidence that strong stabilization might occur. Our results agree qualitatively with the existing experimental findings
Caracterização morfológica, agronômica e fenológica de arroz-vermelho coletados nos Estados da Paraíba e Ceará.
O objetivo deste trabalho é informar à comunidade científica em geral especialmente aos melhoristas, os resultados da avaliação morfológica, agronômica e fenológica de acessos de arroz-vermelho e de cariopse branca, coletados naqueles estados
Laser-induced nonsequential double ionization at and above the recollision-excitation-tunneling threshold
We perform a detailed analysis of the recollision-excitation-tunneling (RESI)
mechanism in laser-induced nonsequential double ionization (NSDI), in which the
first electron, upon return, promotes a second electron to an excited state,
from which it subsequently tunnels, based on the strong-field approximation. We
show that the shapes of the electron momentum distributions carry information
about the bound-state with which the first electron collides, the bound state
to which the second electron is excited, and the type of electron-electron
interaction. Furthermore, one may define a driving-field intensity threshold
for the RESI physical mechanism. At the threshold, the kinetic energy of the
first electron, upon return, is just sufficient to excite the second electron.
We compute the distributions for helium and argon in the threshold and
above-threshold intensity regime. In the latter case, we relate our findings to
existing experiments. The electron-momentum distributions encountered are
symmetric with respect to all quadrants of the plane spanned by the momentum
components parallel to the laser-field polarization, instead of concentrating
on only the second and fourth quadrants.Comment: 14 pages, 7 figure
Control of state and state entanglement with a single auxiliary subsystem
We present a strategy to control the evolution of a quantum system. The novel
aspect of this protocol is the use of a \emph{single auxiliary subsystem}. Two
applications are given, one which allows for state preservation and another
which controls the degree of entanglement of a given initial state
- …