2,570 research outputs found

    A model for Faraday pilot waves over variable topography

    Full text link
    Couder and Fort discovered that droplets walking on a vibrating bath possess certain features previously thought to be exclusive to quantum systems. These millimetric droplets synchronize with their Faraday wavefield, creating a macroscopic pilot-wave system. In this paper we exploit the fact that the waves generated are nearly monochromatic and propose a hydrodynamic model capable of quantitatively capturing the interaction between bouncing drops and a variable topography. We show that our reduced model is able to reproduce some important experiments involving the drop-topography interaction, such as non-specular reflection and single-slit diffraction

    Planewave density interpolation methods for 3D Helmholtz boundary integral equations

    Full text link
    This paper introduces planewave density interpolation methods for the regularization of weakly singular, strongly singular, hypersingular and nearly singular integral kernels present in 3D Helmholtz surface layer potentials and associated integral operators. Relying on Green's third identity and pointwise interpolation of density functions in the form of planewaves, these methods allow layer potentials and integral operators to be expressed in terms of integrand functions that remain smooth (at least bounded) regardless the location of the target point relative to the surface sources. Common challenging integrals that arise in both Nystr\"om and boundary element discretization of boundary integral equation, can then be numerically evaluated by standard quadrature rules that are irrespective of the kernel singularity. Closed-form and purely numerical planewave density interpolation procedures are presented in this paper, which are used in conjunction with Chebyshev-based Nystr\"om and Galerkin boundary element methods. A variety of numerical examples---including problems of acoustic scattering involving multiple touching and even intersecting obstacles, demonstrate the capabilities of the proposed technique

    An adaptive educational system for higher education

    Get PDF
    The main objective of an Adaptive System is to adequate its relation with the user (content presentation, navigation, interface, etc.) according to a predefined but updatable model of the user that reflects his objectives, preferences, knowledge and competences [Brusilovsky, 2001], [De Bra, 2004]. For Educational Adaptive Systems, the emphasis is placed on the student knowledge in the domain application and learning style, to allow him to reach the learning objectives proposed for his training [Chepegin, 2004]. In Educational AHS, the User Model (UM), or Student Model, has increased relevance: when the student reaches the objectives of the course, the system must be able to readapt, for example, to his knowledge [Brusilovsky, 2001]. Learning Styles are understood as something that intent to define models of how given person learns. Generally it is understood that each person has a Learning Style different and preferred with the objective of achieving better results. Some case studies have proposed that teachers should assess the learning styles of their students and adapt their classroom and methods to best fit each student's learning style [Kolb, 2005], [Martins, 2008]. The learning process must take into consideration the individual cognitive and emotional parts of the student. In summary each Student is unique so the Student personal progress must be monitored and teaching shoul not be not generalized and repetitive [Jonassen, 1991], [Martins, 2008]. The aim of this paper is to present an Educational Adaptive Hypermedia Tool based on Progressive Assessment

    Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D

    Full text link
    We present an effective harmonic density interpolation method for the numerical evaluation of singular and nearly singular Laplace boundary integral operators and layer potentials in two and three spatial dimensions. The method relies on the use of Green's third identity and local Taylor-like interpolations of density functions in terms of harmonic polynomials. The proposed technique effectively regularizes the singularities present in boundary integral operators and layer potentials, and recasts the latter in terms of integrands that are bounded or even more regular, depending on the order of the density interpolation. The resulting boundary integrals can then be easily, accurately, and inexpensively evaluated by means of standard quadrature rules. A variety of numerical examples demonstrate the effectiveness of the technique when used in conjunction with the classical trapezoidal rule (to integrate over smooth curves) in two-dimensions, and with a Chebyshev-type quadrature rule (to integrate over surfaces given as unions of non-overlapping quadrilateral patches) in three-dimensions

    Theory of weakly nonlinear self sustained detonations

    Full text link
    We propose a theory of weakly nonlinear multi-dimensional self sustained detonations based on asymptotic analysis of the reactive compressible Navier-Stokes equations. We show that these equations can be reduced to a model consisting of a forced, unsteady, small disturbance, transonic equation and a rate equation for the heat release. In one spatial dimension, the model simplifies to a forced Burgers equation. Through analysis, numerical calculations and comparison with the reactive Euler equations, the model is demonstrated to capture such essential dynamical characteristics of detonations as the steady-state structure, the linear stability spectrum, the period-doubling sequence of bifurcations and chaos in one-dimensional detonations and cellular structures in multi- dimensional detonations

    O modelo de código de responsabilidade profissional da Associação Americana de Advogados = American Bar Association model code of professional responsability

    Get PDF
    Tece um breve percurso histórico da adoção de normas éticas para o exercício da profissão de advogado nos Estados Unidos desde 1836 até o presente. Analisa a criação da Associação Americana de Advogados, que facilitou a codificação dessas normas em nível nacional e estimulou a sua adoção pelos diversos órgãos federais e estaduais
    corecore