1,186 research outputs found

    A Multi-Species Asymmetric Exclusion Model with an Impurity

    Full text link
    A multi-species generalization of the Asymmetric Simple Exclusion Process (ASEP) has been considered in the presence of a single impurity on a ring. The model describes particles hopping in one direction with stochastic dynamics and hard core exclusion condition. The ordinary particles hop forward with their characteristic hopping rates and fast particles can overtake slow ones with a relative rate. The impurity, which is the slowest particle in the ensemble of particles on the ring, hops in the same direction of the ordinary particles with its intrinsic hopping rate and can be overtaken by ordinary particles with a rate which is not necessarily a relative rate. We will show that the phase diagram of the model can be obtained exactly. It turns out that the phase structure of the model depends on the density distribution function of the ordinary particles on the ring so that it can have either four phases or only one. The mean speed of impurity and also the total current of the ordinary particles are explicitly calculated in each phase. Using Monte Carlo simulation, the density profile of the ordinary particles is also obtained. The simulation data confirm all of the analytical calculations.Comment: 20 pages,10 EPS figures; to appear in Physica

    A Study of Truck Platooning Incentives Using a Congestion Game

    Full text link
    We introduce an atomic congestion game with two types of agents, cars and trucks, to model the traffic flow on a road over various time intervals of the day. Cars maximize their utility by finding a trade-off between the time they choose to use the road, the average velocity of the flow at that time, and the dynamic congestion tax that they pay for using the road. In addition to these terms, the trucks have an incentive for using the road at the same time as their peers because they have platooning capabilities, which allow them to save fuel. The dynamics and equilibria of this game-theoretic model for the interaction between car traffic and truck platooning incentives are investigated. We use traffic data from Stockholm to validate parts of the modeling assumptions and extract reasonable parameters for the simulations. We use joint strategy fictitious play and average strategy fictitious play to learn a pure strategy Nash equilibrium of this game. We perform a comprehensive simulation study to understand the influence of various factors, such as the drivers' value of time and the percentage of the trucks that are equipped with platooning devices, on the properties of the Nash equilibrium.Comment: Updated Introduction; Improved Literature Revie
    • …
    corecore