14 research outputs found

    Prioritizing Replenishments of the Forward Reserve

    Get PDF
    Having sufficient inventories in the piece-picking area of a warehouse is an essential condition for warehouse operations. This requires a timely replenishment of the products from a reserve area in case they could run out of stock. In this paper we develop analytical models to arrive at priority rules for these replenishments in case replenishments and order picking are done simultaneously because of time pressure. This problem was observed in a warehouse of a large cosmetics firm. The priority rules are compared by means of simulation and regression. Finally we present the results o

    Stochastic optimization for control of maintenance systems

    No full text

    Gradient estimation for multicomponent maintenance systems with age-replacement policy

    Get PDF
    We consider multicomponent maintenance systems with an F-failure group age-replacement policy: it keeps failed components idling until F components are failed and then replaces all failed components together with the nonfailed components whose age has passed the critical threshold age

    Gradient estimation for discrete-event systems by measure-valued differentiation

    No full text
    In simulation of complex stochastic systems, such as Discrete-Event Systems (DES), statistical distributions are used to model the underlying randomness in the system. A sensitivity analysis of the simulation output with respect to parameters of the input distributions, such as the mean and the variance, is therefore of great value. The focus of this article is to provide a practical guide for robust sensitivity, respectively, gradient estimation that can be easily implemented along the simulation of a DES. We study the Measure-Valued Differentiation (MVD) approach to sensitivity estimation. Specifically, we will exploit the modular structure of the MVD approach, by firstly providing measure-valued derivatives for input distributions that are of importance in practice, and subsequently, by showing that if an input distribution possesses a measure-valued derivative, then so does the overall Markov kernel modeling the system transitions. This simplifies the complexity of applying MVD drastically: one only has to study the measure-valued derivative of the input distribution, a measure-valued derivative of the associated Markov kernel is then given through a simple formula in canonical form. The derivative representations of the underlying simple distributions derived in this article can be stored in a computer library. Combined with the generic MVD estimator, this yields an automated gradient estimation procedure. The challenge in automating MVD so that it can be included into a simulation package is the verification of the integrability condition to guarantee that the estimators are unbiased. The key contribution of the article is that we establish a general condition for unbiasedness which is easily checked in applications. Gradient estimators obtained by MVD are typically phantom estimators and we discuss the numerical efficiency of phantom estimators with the example of waiting times in the G/G/1 queue. © 2010 ACM

    Gradient estimation for discrete-event systems by measure-valued differentiation

    No full text
    In simulation of complex stochastic systems, such as Discrete-Event Systems (DES), statistical distributions are used to model the underlying randomness in the system. A sensitivity analysis of the simulation output with respect to parameters of the input distributions, such as the mean and the variance, is therefore of great value. The focus of this article is to provide a practical guide for robust sensitivity, respectively, gradient estimation that can be easily implemented along the simulation of a DES. We study the Measure-Valued Differentiation (MVD) approach to sensitivity estimation. Specifically, we will exploit the “modular” structure of the MVD approach, by firstly providing measure-valued derivatives for input distributions that are of importance in practice, and subsequently, by showing that if an input distribution possesses a measure-valued derivative, then so does the overall Markov kernel modeling the system transitions. This simplifies the complexity of applying MVD drastically: one only has to study the measure-valued derivative of the input distribution, a measure-valued derivative of the associated Markov kernel is then given through a simple formula in canonical form. The derivative representations of the underlying simple distributions derived in this article can be stored in a computer library. Combined with the generic MVD estimator, this yields an automated gradient estimation procedure. The challenge in automating MVD so that it can be included into a simulation package is the verification of the integrability condition to guarantee that the estimators are unbiased. The key contribution of the article is that we establish a general condition for unbiasedness which is easily checked in applications. Gradient estimators obtained by MVD are typically phantom estimators and we discuss the numerical efficiency of phantom estimators with the example of waiting times in the G/G/1 queue
    corecore