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We consider multicomponent maintenance systems with an F -failure group age-replacement policy: it keeps failed compo-
nents idling until F components are failed and then replaces all failed components together with the nonfailed components
whose age has passed the critical threshold age �n for components of type n. With each maintenance action, costs are
associated. We derive various unbiased gradient estimators based on the measure-valued differentiation approach for the
gradient of the average cost. Each estimator has its own domain of applicability. We also compare the performance of our
gradient estimators when applied to stochastic optimization with other general gradient-free methods.
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1. Introduction
Nowadays individuals and companies depend more and
more on complex systems for their daily functioning. The
potential costs of breakdowns of these systems are quite
high, so the maintenance of systems is crucial to increase
their availability. Therefore, during the past decades, there
has been a growing interest in the modeling and optimiza-
tion of the maintenance of systems consisting of multiple
components. For overviews on multicomponent mainte-
nance optimization, we refer to Nicolai and Dekker (2006)
and the references therein.
Maintenance activities usually involve an intervention

cost and a component replacement cost. Typically, the
intervention cost (e.g., set-up, repair, instrument or sys-
tem down cost, etc.) is relatively high. To avoid immediate
failure replacements, there is usually some redundancy, so
that one can postpone the replacement of a failed com-
ponent until the number of failed components reaches a
certain predefined number. Moreover, the intervention cost
can be reduced when maintenance activities on differ-
ent components are executed simultaneously. Therefore, it
is worthwhile to replace components preventively during
maintenance of failed components.
In this paper, we consider the following modified

F -group failure replacement rule. There are J interchange-
able components that may have different lifetime distribu-
tions. We say that two components are of the same type if
their lifetime distribution is identical. We assume that there

are N types of components in the system and an age thresh-
old is assigned to each type of component. Failed compo-
nents will be kept idling for a certain time until there are in
total F failed components. Then, all failed components are
replaced together with “old” nonfailed components. More
precisely, if the age of a component of type n upon the
maintenance action has passed the critical threshold age �n,
then this component is preventively replaced. The age pol-
icy for the system is completely described by the vector
� = ��1� � � � � �N �. This is an opportunistic maintenance rule;
see Dekker et al. (1998). According to the terminology in
maintenance theory, we study an N -type �J − F + 1�-out-
of-J system, which means that at least J − F + 1 out of
J components must operate. If F > 1, then there is redun-
dancy in the system and it fails less often than its indi-
vidual components. This way a certain reliability can be
guaranteed.
Upon each F -group failure, a maintenance action is

taken. With each maintenance action, costs are associated.
The optimal age policy is given by the value of � that
yields minimal average cost C�T ��� over a given time
period T > 0, which, for example, models the length of
the contract period for maintenance. Note that under suit-
able stability conditions, choosing T appropriately, C�T ���
approximates the long-run average cost.
A typical application of the age-replacement policy to

an (N = 1)-type �J − F + 1�-out-of-J system is given in
Dekker et al. (1998). Therein, the authors deal with main-
tenance of light standards illuminating a container terminal
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at Rotterdam harbor. Such a light standard consists of J
identical lights. To guarantee a minimum luminance, the
lamps are replaced if the number of failed lamps reaches
a predefined number F . To replace the lamps, the assem-
bly has to be lowered. This set-up activity is an oppor-
tunity to combine corrective and preventive maintenance.
An example of applying the age-replacement policy to an
(N = 2)-type �J − F + 1�-out-of-J system is given in Van
der Duyn Schouten et al. (1998), where the problem of
replacing light bulbs in traffic control signals is studied.
More specifically, each installation consists of three com-
partments in which light bulbs serve the green, red, and
yellow lights. The components (light bulbs) seem to be
identical, but the yellow lights burn less often, and their
failure rate differs from that of the other lights. Hence, two
types of components can be defined in such a system.
In cost minimization, one is searching for the optimal

solution �� such that

C�T ���� = min
0��n<��1�n�N

C�T � �1� � � � � �N �� (1)

However, most real-world systems violate the rather restric-
tive conditions for obtaining an explicit expression for
C�T ��� in terms of � or suffer from intractability when
the number of components grows. Thus, one has to resort
to simulation for obtaining the optimal threshold value.
A standard method for finding the optimal threshold value
in an iterative procedure is stochastic approximation (SA).
The general form of SA is

��k + 1� = �	0������k� − ak
Ck�� (2)

where ��k� is the parameter vector at the beginning of iter-
ation k, 
Ck is an estimate of 
C�T ���k�� (the gradient
of C�T ���k���, ak is a (positive) sequence of step sizes,
and �	0��� is the projection onto 	0���. It can be shown
that under suitable conditions ��k� → �∗ for k toward �
with probability one. When 
C�T ���k�� is an unbiased
estimator for 
C�T ���k��, (2) is called a Robbins-Monro
algorithm, but when a finite difference estimator is used,
it is called a Kiefer-Wolfowitz algorithm; see Kushner
and Clark (1978) for more details. It is well known that
the Robbins-Monro algorithm has faster convergence rates
than the Kiefer-Wolfowitz algorithm. This motivates our
research on unbiased, sample-path-based gradient estima-
tion methods.
It is worth noting that, in general, state-independent poli-

cies are not optimal; see L’Ecuyer (1983) and Haurie and
L’Ecuyer (1986). However, due to the complexity of the
problem, computing an optimal state-dependent policy is
usually computationally infeasible. Therefore, we restrict
our analysis to the class of parameterized age-replacement
policies described above.
We establish three unbiased gradient estimators based on

measure-valued differentiation (MVD) for the derivative of
C�T ��� with respect to � for a multicomponent system

with general lifetime distribution. The key step for applying
MVD is to derive a Markov chain description, so that the
associated transition kernel is differentiable with respect to
the components of the parameter vector. For a multicompo-
nent maintenance system we first show how one can derive
a Markov description with a differentiable kernel. Based on
this result, we will introduce unbiased phantom estimators
for 
C�T ���.
To evaluate our phantom estimators, we perform a num-

ber of numerical experiments. For comparison, we choose
finite differences (FD), two-sided FD, and the simultaneous
perturbation (SP) method because they are the only estima-
tors available for our problem; see §3 for a detailed discus-
sion of other gradient estimators. We perform a numerical
study with respect to two criteria:
(1) the “work-normalized variance,” which balances the

computational effort and variance of the estimator, and is
given by the product of the variance and the expected work
per run, see Glynn and Whitt (1992);
(2) the number of iterations and the total computation

time required for finding the optimal value for � via SA.
This paper is organized as follows. In §2, we give a

detailed description of the system model. A detailed discus-
sion of the literature is provided in §3. In §4, we provide
a brief discussion on the MVD method and the phantom
processes, and we present the phantom estimator and the
randomized phantom estimator. In §5, we introduce a new
estimator, called the combined phantom estimator, and we
provide sufficient conditions for unbiasedness of the phan-
tom estimators. In §6, we first compare the performance of
the phantom estimator with the FD, two-sided FD, and SP
estimator according to the above criterion (1) with the help
of a series of numerical experiments. We conclude §6 by
comparing the estimators with respect to criterion (2) in an
optimization.

2. The System Model
We consider a general maintenance system consisting of
N � 1 types of components. There are Jn � 1 components
of type n and there are in total

∑N
n=1 Jn = J components in

the system. We denote by �= �1� � � � � J � the set of compo-
nents, and we denote by �n the set of components belong-
ing to type n. Without loss of generality, we assume that
components are numbered in ascending order; i.e., com-
ponent 1 to J1 are of type 1 and J1 + 1 to J1 + J2 are of
type 2, and so on. Furthermore, for any � ⊂ �, we write
�c = �\��
The lifetime of the components of type n are indepen-

dent and identically distributed with cumulative distribution
function Fn�·� for 1 � n � N , with density fn. For refer-
ence, we introduce the following assumption.

Assumption 1 (A1). For each n, with 1 � n � N , we
assume that fn�·� is continuous on its support and that
the support of fn�·� is a subset of 	0��� containing
at least 	0� T �.
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Let 	j� denote the type of component j; i.e., 	j� = n
if and only if j ∈ �n. Then, the residual lifetime of the
component j in state s = ���u�a1� � � � � aJ � ∈ S, denoted
by Rj�s�, has density

hj�t � aj� = f	j��t + aj�

1− F	j��aj�
� t � 0� (3)

Note that (A1) implies that hj�· � aj� in (3) is continuous
on 	0���. To avoid inflation of the subscript � ∈ �0���N

in the notation, we will suppress denoting the dependence
on � when this leads to no confusion.
Let ������� denote a probability space and assume

that all random variables introduced are defined on this
probability space. We say that every F -failure causes a
maintenance action and the F -failure epochs are called
maintenance action epochs. We introduce the following
variables:

• A�j�m�, the age of component j right after the mth
maintenance action epoch;

• ��m�, the time at which the mth maintenance action
takes place; with ��0� = 0;

• T �m�, the time elapsed between the �m−1�st and the
mth maintenance action; more specifically, T �m� = ��m�−
��m − 1� for m� 1;

• ��m�, the set of components that have failed during
time T �m�;

• ��m�, the set of components that have been preven-
tively replaced at the mth maintenance epoch; note that
��m� ⊆ ���m��c.

The system evolves as follows. The system starts at
time zero with J components new. After ��k� time-units,
the kth maintenance action occurs. Upon the kth mainte-
nance action, the F failed components, given by set ��k�,
are replaced and, due to our replacement policy, we pre-
ventively replace all components j ∈ ��k�. More specifi-
cally, component j of type 	j� is preventively replaced if
A�j� k − 1� + T �k� > �	j�� All replaced components are of
age A�j� k� = 0, and the nonreplaced components are of
age A�j� k� = A�j� k − 1� + T �k��

We describe the system by a Markov chain

X� ��X��m�����m��T �m��A�1�m������A�J �m�� m∈���

and denote its state space by S � 	0���J+2. We assume
that the system starts at time 0 with all components new
and set X��0� = 0J+2� where 0J+2 denotes the zero vec-
tor of length J + 2. A given state s ∈ S is denoted by
s = ��� t� a1� � � � � aJ �, where � denotes the current time,
t denotes the holding time, and aj denotes the age of com-
ponent j . The transition kernel of this Markov chain is
denoted by Q�; we will give the explicit form of Q� in §5.1.
With each maintenance action, there is cost associated.

Let gc S 	→ 	0��� be the cost function. For example, if the
replacement of one component causes cost CR > 0 and the

cost incurred for an intervention is CI > 0, then we obtain
the classical cost function for ��� t� a1� � � � � aJ � = s ∈ S�

gc�s��CI + n�s�CR� (4)

where n�s� =∑J
j=1 ��aj = 0� is the number of components

replaced.
For s ∈ S, we introduce the stopping time M�T ��� =

inf�k � 1 ��k� � T � as the index of the first maintenance
action after T provided that all components are initially
new. The performance measure over a fixed time horizon
C�T ��� can be written as

C�T ��� = 1
T
Ɛ

[M�T ���−1∑
i=1

gc�X��i��

]
� (5)

Differentiating the expression in (5) with respect to �n

yields

�

��n

C�T � �� = 1
T

�

��n

Ɛ

[M�T ���−1∑
i=1

gc�X��i��

]
� (6)

In what follows we will use MVD to establish unbiased
estimators for the above expression.

3. Review of Literature
Optimization of a multicomponent maintenance system
with age-replacement policy has been studied by L’Ecuyer
et al. (1999) using a “split-and-merge” approach. This
approach has been developed by Vázquez-Abad et al.
(1996) and L’Ecuyer and Vázquez-Abad (1997). The key
idea of this method is that different values of � only lead
to finitely many different outcomes of the cycle costs;
i.e., the sample cost is a piecewise constant function in �.
Simulating all possible alternatives in parallel, the method
is capable of estimating the entire performance function
within one experiment. For a single type J -out-of-J system
(i.e., N = 1� F = 1), the authors proved that the expected
growth rate of the tree is bounded linearly in the total num-
ber of simulated regenerative cycles and quadratic in the
number of the components in the system. It is worth noting
that the actual optimization based on the split-and-merge
approach for threshold-type parameters (such as � defining
our age-replacement policy) is still an open question; see
L’Ecuyer (1993).
An importance-sampling-based approach to gradient esti-

mation is the score-function (SF) method; see Rubinstein
(1998). SF yields an unbiased gradient estimator through
rescaling the observed sample-path performance by appro-
priate weights. SF is designed for sensitivity analysis w.r.t.
distributional parameters and cannot be applied to our
maintenance problem in a straightforward way. As pointed
out in Rubinstein (1992), it is sometimes possible to trans-
late the dependence of the sample performance on � into a
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�-dependent transformation of a random variable and thus
turn � into a distributional parameter. This is called the
“push out” SF in Rubinstein (1992). However, applying the
push out SF requires that the dependence of the sample
cost on � is given in a simple explicit form, which is not
the case for the maintenance problem under study.
Perturbation analysis (PA) provides derivative estima-

tors based on sample path analysis; see Glasserman (1988;
1991a, b, c), Ho and Cao (1991), Suri (1987, 1989), and
Heidelberger et al. (1988). Infinitesimal PA (IPA) is the
technique of exploiting the commutativity of the differen-
tial and expectation, and it is known as the most efficient
means of sensitivity estimation from a single sample path.
However, a condition for unbiasedness of IPA is Lipschitz
continuity of the sample performance function in the param-
eter of interest. Lipschitz continuity fails for our mainte-
nance problem because � is a threshold variable and a small
change in � may yield a discrete change in the sample path
dynamic.
Smoothed perturbation analysis (SPA), as introduced by

Gong and Ho (1987) and further developed by Glasserman
and Gong (1990), overcomes the restriction of IPA to con-
tinuous sample cost functions. SPA is a technique that takes
advantage of the conditional expectation to smooth out the
discontinuities of sample performance functions and give
the unbiased estimator for general models. For details on
SPA, we refer to the monograph by Fu and Hu (1997).
An SPA estimator for dC�T ���/d� is derived by Fu et al.
(1993). Although the analysis of the SPA estimator is carried
out for a single-type multicomponent maintenance system
(i.e., a single-type J -out-of-J system), the actual estima-
tor is, due to its complexity, only computationally efficient
for the case of J = 2 under the assumption that the life-
time of the components are uniformly distributed on 	0���

for � > 0. As the study in Heidergott and Farenhorst-Yuan
(2007) shows, the phantom estimator has a considerably
lower variance than the SPA estimator and requires less
computational effort for a two-component maintenance sys-
tem with uniformly distributed lifetime.
A weak derivative approach to optimization of the

threshold parameters in a multicomponent maintenance
system is given in Heidergott (2001). Therein, a mainte-
nance system with identical components (i.e., a single-type
J -out-of-J system) is analyzed. The estimator presented
in Heidergott (2001) involves the computation of a poly-
nomial that can only be solved explicitly in special
cases. The estimator presented in our paper will not
require computation of the polynomial as described in
Heidergott (2001).
The above sophisticated methods either do not apply to

the cost optimization problem considered in this paper or
are numerically inefficient. For this reason, we will resort
to the general purpose methods such as FD, two-sided FD,
and SP as benchmarks in our numerical experiments.

4. The Measure-Valued Differentiation
Approach

4.1. Basic Definition

MVD is an extension of the concept of weak differentia-
tion. For details on weak differentiation see Pflug (1996)
and Heidergott et al. (2010b). The key step for the MVD
approach is computing �Q�/��n for 1 � n � N , i.e., the
nth partial derivative of the Markov kernel of X�. We refer
to Heidergott and Vázquez-Abad (2008) for introductory
examples of the MVD method. It is easily shown that
�Q�/��n fails to be a Markov kernel. Fortunately, one can
represent �Q�/��n by the rescaled difference between two
Markov kernels Qn+

� and Qn−
� . More specifically, let Q� be

a Markov kernel on state-space S and let Cb denote the
set of continuous bounded mappings from S to 
. If for n,
with 1� n�N , and ∀ s ∈ S,

∀g ∈ Cb
�

��n

∫
g�u�Q��s�du�

= cn
� �s�

(∫
g�u�Qn+

� �s�du� −
∫

g�u�Qn−
� �s�du�

)
� (7)

then �cn
� �Qn+

� �Qn−
� � is called a partial weak derivative of

Q� with respect to �n; see Heidergott and Vázquez-Abad
(2008). In shorthand notation, �Q�/��n = cn

� �Qn+
� − Qn−

� �.
It can be shown that the fact that (7) holds for all g ∈ Cb

implies that �Q�/��n is uniquely defined; see Billingsley
(1966). Under quite general conditions, the existence of
weak derivatives follows from a Hahn-Jordan-type decom-
position for Markov kernels; see Heidergott et al. (2008).
Note that gc defined in (4) is an element of Cb.
For the reader less acquainted with MVD, it is worth

noting that (7) often can be checked in a simple way. Pro-
vided that � is a distributional parameter (e.g., the mean of
the distribution), MVD enjoys a modular structure: weak
differentiability of the input distributions of a discrete event
system imply, under quite general conditions, weak dif-
ferentiability of the Markov kernel modeling the system
process. For example, if the service time distribution in a
G/G/1 queue is weakly differentiable with respect to �,
then, under some mild integrability conditions, weak differ-
entiability of the Markov kernel of the waiting times with
respect to � follows; see Heidergott et al. (2010a). Once
weak differentiability of the Markov kernel of the system
process is established, under appropriate stability condi-
tions, weak differentiability of the Markov kernel of the
system dynamic implies weak differentiability of the per-
formance over a cycle or the stationary performance; see
Heidergott and Vázquez-Abad (2006) and Heidergott et al.
(2006). In case � is a threshold parameter, as in the main-
tenance model under consideration, the analysis is more
challenging because for this problem the Markov kernel has
to be analyzed directly (i.e., the modular structure is lost).
However, as we will show in this paper, for our mainte-
nance problem the validity of (7) follows from two simple
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assumptions, (A1) and (A2) (the latter being introduced
in §5).
MVD for Markov chains is an operator approach to

calculating derivatives of k-fold convolutions of Markov
kernels such as Q�. If Q� has partial weak derivative
�cn

� �Qn+
� �Qn−

� � with respect to �n, then in Heidergott and
Vázquez-Abad (2008) it is shown that under quite general
conditions

�Qk
�

��n

=
k∑

j=1

cn
� �Q

k−j
� Qn+

� Q
j−1
� − Q

k−j
� Qn−

� Q
j−1
� �� (8)

Hence, �Q�/��n and consequently the derivative of
Ɛ	g�X��k + 1�� � X��1� = 0J+2� with respect to �n,
for g ∈ Cb, can be expressed by the sum over k differences
evaluated for appropriately defined Markov chains. More
specifically, the transition kernel of these Markov chains
is Q� except for one transition (indexed by j in (8)) for
which the transition kernel is replaced by either Qn+

� or Qn−
� ,

respectively. These versions of the nominal Markov chain
X� are called phantoms and will be formally introduced in
the next section (for an early reference on the use phantoms
in gradient estimation, see Brémaud and Vázquez-Abad
1992). The formula for the derivative of cost accumulated
over a fixed number of transitions can be easily derived
from (8).

4.2. Phantom Processes for the nth Partial
Derivative

The definition in (7) can be expressed in terms of random
variables Xn±

� �s� as

∀g ∈ Cb
�

��n

∫
g�u�Q��s�du�

= Ɛ�	c
n
� �s��g�Xn+

� �s�� − g�Xn−
� �s���� (9)

for all s ∈ S, where X±
� �s� are appropriately defined random

variables such that for all g ∈ Cb and all s ∈ S,

Ɛ�	g�Xn±
� �s��� =

∫
g�u�Qn±

� �s�du�� (10)

We introduce the “plus” and “minus” processes
�Xn±

� �s� k� k � 1�, called phantoms for the nth partial
derivative, as follows. At a particular state s, the nominal
process “splits” in three different trajectories. Suppose that
the phantoms are generated from the kth state of X�; that is,
s = X��k�. The transition from s to Xn+

� �s�1� is governed
by Qn+

� and that from s to Xn−
� �s�1� by Qn−

� , respectively.
That is, Xn±

� �s�1� = Xn±
� �s�, where Xn±

� �s� satisfies expres-
sion (10). For k > 1, the transition from Xn±

� �s� k − 1� to
Xn±

� �s� k� is governed by Q�. That is, after the splitting, the
transition kernels are equal for the three processes. Conse-
quently, for k � 1 it holds that

�
(
Xn±

� �s� k� ∈ A � X��k� = s
)= �Qk−1

� Qn±
� ��s�A�

for any s ∈ S and any measurable A ⊂ S. In §5.2, we will
show how to obtain Xn±

� �s�1� for our maintenance system.
With the help of the phantom processes, operator Equa-
tion (8) now reads

�

��n

Ɛ	g�X��k + 1�� � X��0� = s�

=
k∑

j=1

Ɛ	cn
� �X��j���g�Xn+

� �X��j�� k − j + 1��

− g�Xn−
� �X��j�� k − j + 1��� � X��0� = s� (11)

for all g ∈ Cb and all s ∈ S�
Gradient estimation for the case that X� is evaluated over

a random horizon is discussed in the following section.

4.3. Phantom Estimators

For g ∈ Cb and X��m� = s ∈ S, m � 1, the scaled differ-
ence between the cumulative costs over the plus and minus
phantoms for the nth partial derivative is given by

Dn�g� s�� cn
� �s�

(M�Xn+
� �s�1�� T � ��−1∑

k=1

g�Xn+
� �s� k��

−
M�Xn−

� �s�1�� T � ��−1∑
k=1

g�Xn−
� �s� k��

)
� (12)

where M�s�T � �� = inf�k � 1 X��k� ∈ 	T ��� × 	0���J+1

and X��0� = s�. Note that with this definition it holds that
M�T ��� = M�0J+2� T � ��� In §5, we will derive the initial
state of the plus and minus processes, i.e., Xn±

� �s�1�, for
maintenance systems. The computational burden for eval-
uating (12) can be reduced by coupling the phantoms; for
details see §EC.1 in the electronic companion.
An electronic companion to this paper is available as part

of the online version that can be found at http://or.journal.
informs.org/.
For g ∈ Cb, the phantom estimator (PhE) for the nth par-

tial derivative is given by

PhEn�g��
M�T ���−1∑

k=1

Dn�g�X��k��� (13)

PhEn�g� can be phrased as follows: at each state of the nom-
inal processes a plus and a minus phantom for the nth partial
derivative is generated and the derivative is estimated by the
scaled difference between the cumulative costs over the plus
and minus phantoms.
Alternatively, we may obtain the derivative by the so-

called randomized phantom estimator (RPhE) for the nth
derivative. It works as follows: (i) we first choose an integer
� independent of everything else and uniformly distributed
over �1� � � � �M�T ���−1�; (ii) we generate a plus and minus
phantom at state X����; and (iii) we evaluate the differ-
ence between the cumulative costs of the plus and the minus
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Figure 1. The phantom estimator and the randomized phantom estimator for the nth partial derivative.
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phantom and rescale this difference by M�T ���−1. For all
g ∈ Cb, the resulting estimator becomes

RPhEn�g��
(
M�T ��� − 1

)
Dn�g�X������ (14)

To the best of our knowledge, the idea of replacing the
sum of M�T ��� − 1 by uniformly choosing one particular
transition between 1 and M�T ��� − 1 for phantom genera-
tion first appeared in Vázquez-Abad and Davis (1995).
We conclude this section with a discussion of RPhE

and PhE. The essential difference between these two esti-
mators is that PhE generates, from each state of a sim-
ulation run, two phantoms (namely, the plus and minus
phantoms, respectively), whereas RPhE generates phantoms
only at one randomly chosen state. This essential differ-
ence is illustrated in Figure 1, which depicts the situa-
tion for a simulation run. As can be seen in Figure 1,
PhE requires simulating 2 �M�T ��� − 1� phantoms (those
generated at states X��1� to X��M�T ��� − 1�), whereas
RPhE only requires two phantoms per cycle to be simulated
(those generated at X����, with � uniformly distributed
over �1� � � � �M�T ���− 1�). Numerical examples will illus-
trate the performance of these estimators in §6.

5. The Phantom Estimator for
Multicomponent Maintenance Systems

5.1. The Markov Kernel

In this section, we provide a discrete-time Markov chain
description of an N -type F -group failure multicomponent
maintenance system such that its associate transition kernel
is differentiable as a function in �. Note that the previously
mentioned kernel Q� is being explicitly defined here. For
m� 0, let

X��m + 1� = ����m + 1����m + 1�� T �m + 1��X��m��

= ���m� + T �m + 1�� T �m + 1��

A�1�m + 1�� � � � �A�J �m + 1�� (15)

denote the state mapping function. The transition from
X��m� to X��m + 1� as formalized in (15) can be phrased
as follows: the transition from X��m� to X��m + 1� is trig-
gered by the F -group failure of components ��m + 1�, the
holding time of X��m� is T �m + 1�, and the components
out of ��m+1� are preventively replaced upon this failure.
Moreover, the age of a component is updated as follows:

A�j�m + 1� =

⎧⎪⎨
⎪⎩
0� j ∈ ��m + 1� ∪��m + 1��

A�j�m� + T �m + 1��
j ∈ ���m + 1� ∪��m + 1��c�

(16)

The key idea for deriving the transition kernel Q� is as
follows. Given the components which constitute the next
F -group failure (i.e., ��m + 1�), the time to the next fail-
ure (i.e., T �m + 1�) can be determined. On the basis of
the F -group failure and the holding time, the components
which are preventively replaced (i.e., ��m + 1�) can be
determined.
From (3), the transition out of X��m� = s =

��� t� a1� � � � � aJ � ∈ S is triggered by a failure of component
set ��m + 1� with probability

����m + 1� = � � X��m� = s�

=∑
j∈�

∫ �

0

( ∏
i∈�\�j�

∫ u

0
hi�r � ai�dr

· ∏
i∈� c

∫ �

u
hi�r � ai�dr

)
hj�u � aj�du�

s ∈ S� Provided that components in ��m + 1� = � trig-
ger the transition out of state X��m�, the holding time
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T �m + 1� = T ��� has distribution

��T �m+1�� t���m+1�=� �X��m�=s�

=∑
j∈�

∫ t

0

( ∏
i∈�\�j�

∫ u

0
hi�r �ai�dr

· ∏
i∈� c

∫ �

u
hi�r �ai�dr

)
hj�u �aj�du� t�0� (17)

for s = ��� t� a1� � � � � aJ � ∈ S. Thus, the density of T ���,
denoted by h�� � t�, can be calculated as follows:

h�� �t�=∑
j∈�

hj�t �aj�
∏

i∈�\�j�

∫ t

0
hi�r �ai�dr

∏
i∈� c

∫ �

t
hi�r �ai�dr

=∑
j∈�

f	j��t+aj�∏
i∈��1−F	i��ai��

∏
i∈�\�j�

�F	i��t+ai�−F	i��ai��

· ∏
i∈� c

�1−F	i��t+ai��� (18)

Then, Equation (17) can be written as

��T �m + 1�� t���m + 1� = � � X��m� = s�

=
∫ t

0
h�� � u�du� t � 0� (19)

We have explained at the beginning of this section that con-
ditioning the holding time on the triggering F -group fail-
ure and the preventive replacements group is crucial for
our analysis. However, in Equation (17), we only use the
conditioning on the F -group failure. In what follows, we
will present the conditioning on the preventive replacements
group.
Given state s = ��� t� a1� � � � � aJ � and the set of compo-

nents � that triggers the transition out of state s, the set
of preventively replaced components is determined through
the holding time T ���. Indeed, component j ∈ � c is pre-
ventively replaced if and only if aj + T ��� > �	j� ⇔
T ��� > �	j� −aj � Hence, there exists a partitioning of 	0���
into a finite number of disjoint intervals �0� � � � ��N�����
along with a corresponding collection of distinct sub-
sets �0� � � � ��N���� ⊆ � c such that the set of preventively
replaced components is �i��� if and only if T ��� ∈ �i�
In the following, we will construct this partitioning. This
construction will depend on s. However, to avoid a nota-
tional overflow, we will suppress the dependence on s in the
notation.
For 1� n�N , we introduce the set of the critical holding

times

V��n��� = ��n − ai� i ∈ � c ∩ �n�� (20)

which is the set of mutually different critical holding times
of type n components. Let V���� = ⋃N

n=1 V��n��� denote
the set of all critical holding times, which is the basis for
generating the partition of interval 	0���. More specifically,

if N���� denotes the number of elements of V����, then
N���� + 1 is the number of partitions.

We now construct an ascending ordered vector of critical
holding times U��� with U0��� = 0�Ui��� < Ui+1���, and
UN����+1��� = � such that �i = �Ui����Ui+1����, where
Ui��� is defined as

Ui��� =min�t ∈ V���� t > Ui−1���� (21)

for 1 � i � N����� Consequently, if T ��� ∈ �i =
�Ui����Ui+1����� then component j is preventively
replaced if �	j� − aj < Ui+1���. Note that �i��� as a map-
ping of T ��� is constant on �i, and it holds that

�i��� =
N⋃

n=1

{
j ∈ �� c ∩ �n� �n − aj < Ui+1���

}
� (22)

Denote R��� =⋃N����
i=0 �i��� the set of all components that

are potentially preventively replaced upon failure of the
components in � .
To illustrate the relationship between the holding time

T ��� and the preventive replacement set R���, we give an
example in §EC.2 in the electronic companion.
Based on Equations (19) and (22), we obtain

��Ui��� < T �m + 1��Ui+1������m + 1� =�i����

��m + 1� = � � X��m� = s� =
∫ Ui+1���

Ui���
h�� � t�dt� (23)

The transition dynamic of X� is completely described
by (15) together with (23), and we denote the corresponding
transition kernel of X� by Q� Q��s�A� � ��X��m + 1� ∈
A � X��m� = s� for all s ∈ S and any measurable A ⊂ S. Let
� f =⋃

�⊂�
���=F

�. For any g ∈ Cb and any s ∈ S, we obtain∫
g�u�Q��s�du� =

∫
g�u���X��m + 1� ∈ du�X��m� = s�

= ∑
�∈� f

N����∑
i=0

∫ Ui+1���

Ui���
g���� ��i���� t� s��

· h�� � t��dt�� (24)

Equation (24) concludes the construction of the Markov
kernel Q�. We introduce the following assumption.

Assumption 2 (A2). The components of ��n 1 � n � N�
are mutually distinct, that is, �i �= �j for i� j ∈ �1�N �
with i �= j .

Note that (A2) imposes no severe restriction to our main-
tenance system because different types of components have
different distributions, i.e., different failure rates which leads
to different age thresholds per type.

Lemma 1. Assume that (A2) holds for ��n 1 � n � N�.
Then, there exists an open neighborhood �0 of �, such
that N���� and Ri����0 � i � N����, are constant on �0

as a mapping of �. Moreover, Ui��� is differentiable for
0� i �N���� and it holds:

�

��n

Ui��� =
{
0� Ui��� �∈ V��n����

1� Ui��� ∈ V��n����
(25)
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The proof of this lemma is presented in §EC.4 in the
electronic companion. Note that in case (A2) fails, a result
similar to that in Lemma 1 holds for one-sided derivatives.

5.2. The Phantom Estimator

So far, we have developed a transition kernel for X� such
that the kernel is differentiable with respect to �n for
1� n�N ; see Lemma 1. In what follows, we will calculate
the partial derivatives and represent them as the difference
of two suitable transition kernels. Let ��n��� denote the
essential-time index set, which indicates where the partial
derivative with respect to �n has nonzero value,

��n��� = {
1� i �N���� Ui��� ∈ V �n���

}
� (26)

An example illustrating the construction of ��n��� is
given in §EC.3 in the electronic companion. For s =
��� t� a1� � � � � aJ � ∈ S, set

cn�s� = ∑
�∈� f

∑
i∈��n���

h
(
� �Ui���

)
� (27)

By construction, ��n��� and Ui��� are measurable map-
pings in s (see (26), and (20) together with (21)), and cn�·�
is thus measurable. We now introduce discrete probabilities
on

⋃
�∈� f

⋃
i∈��n������ � i��, by

pn�� � i� = h
(
� �Ui���

)
cn�s�

� (28)

We define Xn+
� �s� and Xn−

� �s� as follows. With probabil-
ity pn�� � i�, we let

Xn+
� �s� = �

(
� ��i−1����Ui���� s

)
and

Xn−
� �s� = �

(
� ��i����Ui���� s

)
� (29)

The phantom processes are now constructed as described
in §4.2, where the initial state of the phantom is given by
Xn±

� �s�1� = Xn±
� �s�. With this notation at hand (as shown in

§EC.5 in the electronic companion), it holds for any s ∈ S
and g ∈ Cb that
�

��n

Ɛ�	g�X��k + 1�� � X��k� = s�

= Ɛ	cn
� �s��g�Xn+

� �s�� − g�Xn−
� �s����� (30)

Thus, we have obtained an explicit representation of
��/��n�

∫
g�u�Q��s�du�; compare (30) with (9). Introduc-

ing the phantom processes for the nth partial derivative
�Xn±

� �s� k� k � 1�, as described in §4.2, the phantom
estimators for �C�T � ��/��n can be obtained from Equa-
tion (13).
We summarize the analysis in the following theorem (for

a proof, see §EC.6 in the electronic companion).

Theorem 1. Let conditions (A1) and (A2) be satisfied.
Then, it holds for all g ∈ Cb that

1
T

�

��n

Ɛ

[M�T ���−1∑
i=1

g�X��i��

]
= 1

T
Ɛ�	PhE

n�g��

= 1
T
Ɛ�	RPhE

n�g���

5.3. Extension of the Phantom Estimator

As explained in §4, we have proposed two gradient esti-
mators: the phantom estimator (PhE) and the randomized
phantom estimator (RPhE). PhE uses formula (6) together
with (13) and RPhE uses formula (6) together with (14)
to calculate the gradient of C�T ���. For these estimators,
the gradient information is obtained from the scaled dif-
ference between the cumulative costs over the plus and
minus phantoms. Therefore, for each sample path, PhE
needs 2 �M�T ��� − 1� phantoms per simulation run. Simu-
lating the phantoms can be stopped either when the phan-
toms couple or when the time horizon T is reached. The
coupling is achieved if the plus and minus phantom simulta-
neously hit the set 	0���2 × �0J � and the time to this event
is denoted by �n�s�; see §EC.1 in the electronic companion
for details. If the probability that the plus and minus phan-
tom simultaneously hit the set 	0���2 × �0J � decreases,
�n�s� will increase, which implies that many phantoms need
to be simultaneously simulated. In such a situation PhE will
have a “phantom overflow” problem, leading to a heavy
storage and computational burden. In contrast, RPhE only
generates two phantoms each run, but at the price of higher
variance.
To control the number of phantoms that have to be sim-

ulated simultaneously, we combine PhE and RPhE in the
following way. For each sample path, we only generate
NPh phantoms, where the number NPh is predefined by
the user. That means we generate two phantoms (plus and
minus phantom) per batch of ��M�T ��� − 1�/NPh� failures.
Within each batch of failures, we apply the randomized
phantom method. Therefore, we will simulate in total 2NPh

phantoms instead of 2�M�T ���−1�. This allows control of
the computational burden and the variance through NPh.

We call this the combined phantom estimator (CPhE),
which can be given as follows:

CPhEn�g��

(NPh−1∑
k=1

C1D
n�g�X���1�k���

)

+ C2D
n�g�X���2��� (31)

where C1 = ��M�T ��� − 1�/NPh� �C2 = M�T ��� − 1 −
C1�NPh − 1�, �1�k� is an integer uniformly distributed on
�1 + �k − 1�C1� � � � � kC1�, and �2 is an integer uniformly
distributed on �1+�NPh −1�C1� � � � �C2+�NPh −1�C1�. The
following theorem provides sufficient conditions for unbi-
asedness of CPhEn�g� (for a proof, see §EC.7 in the elec-
tronic companion).

Theorem 2. Let conditions (A1) and (A2) be satisfied.
Then, it holds for all g ∈ Cb that

1
T

�

��n

Ɛ

[
M�T ���−1∑

i=1

g�X��i��

]
= 1

T
Ɛ�

[
CPhEn�g�

]
�



Heidergott and Farenhorst-Yuan: Gradient Estimation for Multicomponent Maintenance Systems
714 Operations Research 58(3), pp. 706–718, © 2010 INFORMS

6. Numerical Results

6.1. General Experiment Settings

In the previous section, we have analyzed a general
�J − F + 1�-out-of-J maintenance system with N -types of
components. In this section, we will perform experiments
on a system with two types of components. We assume
that both types of components have a Weibull-(���) dis-
tribution, i.e., F����x� = 1 − exp�−��x���. We choose the
Weibull parameter for both types as �1 = 0�8930��1 = 3
and �2 = 0�8862��2 = 2. That is, the lifetime distributions
have a long right tail and first moment equal to one. How-
ever, type 1 components have higher failure rate than type 2
components. Because the cost incurred for failure interven-
tion CI is usually higher than the replacement cost per com-
ponent CR, we set CI = 4 and CR = 1.

As discussed in §3, we apply the finite difference (FD)
method. This leads to the “twin numerical evils” of approx-
imation error (approximating the slope of a curve by
its secant) and numerical noise (dividing by small ��);
see Strickland (1993). Any application of the FD method
involves a trade-off between these two effects. Thus, we first
perform a series of numerical experiments to identify a good
setting for the FD estimator.
For N > 1, the control threshold parameter � is an

N -dimensional vector, and we need to solve a multivariate
optimization problem. In this case, the standard FD
approach perturbs each component �n of � one at a time and
the two-sided FD approximation of 
C�T ��� is given by


C�T ��� ≈
(

C�T �� + ce1� − C�T �� − ce1�

2c

· · · C�T �� + ceN � − C�T �� − ceN �

2c

)
� (32)

where ei denotes a vector with a one in the ith place and
zeros elsewhere. FD requires 2N measurements, which is
usually not very efficient. The SP method, as introduced
by Spall (1987) and more fully analyzed in Spall (1992),
overcomes this drawback. The essential feature of SP is its
underlying gradient approximation that requires only two
measurements per iteration independent of the dimension
N . SP has all elements of � randomly perturbed together
(simultaneously) to obtain two measurements C�T � ·�, but
each component of 
C�T ��� is formed from a ratio involv-
ing the difference in the two corresponding measurements
and the individual components in the perturbation vector.
For two-sided SP, we have

�

��i

C�T � �� ≈ C�T �� + c�� − C�T �� − c��

2c�i

for 1� i � n� (33)

where �i is the ith component of the � vector (which may
be ±1 random variables). Note that the common numerator
in all N components of 
C�T ��� reflects the simultaneous
perturbation of all components in �. This provides the poten-
tial for large savings in the overall cost of optimization.

6.2. Gradient (Sensitivity) Estimation

As presented in §4.3, if both phantom processes simultane-
ously hit set 	0���2 × 0J , we can terminate simulating the
phantoms. That is, simulating the phantoms can be stopped
either after �n�s� transitions or when the time horizon T is
reached. We mentioned in §5.3 that PhE will have a “phan-
tom overflow” problem. In the following example, we show
how this effects the simulation time of PhE.

Example 1. We perform an experiment on a small sys-
tem, with N = 2� F = 2� J1 = 3, and J2 = 3, and we let
T = 14�000 time units. We fix �2 = 0�6, and the num-
ber of replications is 20. The computation time of PhE
as a function of �1 is depicted in Figure 2. Note that the
computation time increases exponentially as � increases.
The main reason for this increase is that the probability
decreases that, upon the failure of in total two components
(F = 2), the ages of all J − F = 4 operational compo-
nents are larger than �. The phantoms, therefore, couple too
slowly. The phantom estimator requires simulating approxi-
mately

∑M�T ���
k=1 min���X��k���M�T ���−k +1� additional

failures; see Figure 1. As a result, if � increases, the compu-
tational burden (i.e., the number of phantoms) also increases
which leads to higher simulation time.
As presented in §5.3, PhE has large computational bur-

den while RPhE has high variance. Because these two esti-
mators require different computational efforts, which leads
to different variance, it is important to reflect effort appro-
priately. A standard measure, dating at least to Hammer-
sley and Handscomb (1964) and formalized in a general
framework by Glynn and Whitt (1992), compares estima-
tors based on the product of variance and expected effort
per run. This is the work-normalized variance (WNV).
For the set-up in Example 1, we compare the half con-

fidence interval width, the computation time, the variance,
and the WNV of these two estimators in Table 1. PhE has
much smaller variance than RPhE, but it takes PhE much
more time than RPhE. Nevertheless, PhE has smaller work-
normalized variance than RPhE. This indicates that, if PhE
is applicable, PhE has better performance than RPhE.

Figure 2. The computation time of PhE for a 2-type
5-out-of-6 system.
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Table 1. Comparison of two different phantom estima-
tors: PhE and RPhE.

Half conf. Total
Method ��/��1�C interval time (s) Variance WNV

PhE −0�447598 0�005477 696�035 0�001561 0�005435

RPhE −0�458010 0�586107 11�984 17�8843 1�071626

Note. J1 = 3� J2 = 3� �1 = 0�4� �2 = 0�6� T = 14�000� number of
runs= 200.

For the model in Example 1, RPhE suffers from a high
variance and the number of simulation runs has to be
increased to obtain a relatively accurate gradient estimation.
PhE, on the other hand, has a high computational burden due
to the fact that there are too many parallel phantoms needed
to be simulated. To control the number of phantoms that
have to be simulated simultaneously, we use CPhE; see §5.3.
We illustrate the influence of NPh on the performance of this
estimator in the following example.

Example 2. In this experiment, a two-type component
maintenance system is studied, with J1 = 4� J2 = 6� F = 2,
and the time horizon is set to T = 14�000 time units. Numer-
ical experiments for different values of NPh for CPhE show
that with increasing NPh the WNV of the combined phan-
tom estimator is decreasing. (The detailed results are pre-
sented in tabular form in §EC.8 of the electronic compan-
ion.) Therefore, in practice there is a trade-off between low
variance and short computation time for large maintenance
systems. The choice of the value of NPh is up to the user.

Example 2 suggests the following rule of thumb. If the
computation time underlies no restriction, one can choose a
large value for NPh to obtain a small variance of the gradi-
ent estimator. On the other hand, if the computational bur-
den becomes an issue, one can decrease the value of NPh

to obtain the best gradient estimation within a given restric-
tion of computation time and storage limitation. Determin-
ing a priori the optimal setting of NPh is a topic of further
research.
For the setup of Example 2, we compare the WNV of

CPhE, SP, and FD in Figure 3. To apply FD and SP, we
have first performed a series of experiments and determined
c = 0�001 as an appropriate choice in (32) and (33). For
CPhE, we choose NPh = 200, which has relatively low com-
putational burden while the WNV is relatively high. As can
be seen from the figure, even for such a setting, the CPhE
estimator outperforms the other methods. On average, the
WNV of FD, two-sided FD, and SP is, respectively, 10, 6,
and 7 times that of CPhE with NPh = 200.
It is worth noting that for estimating a single partial

derivative, the phantom estimator is more efficient than
the SP method, but as the dimension of � increases, this
advantage will be compromised. The reason is that the
phantom estimator requires N estimates for the gradient,
whereas SP only requires one simulation for all the gradient

Figure 3. Comparison of the WNV of four different
estimators for a 2-type 5-out-of-6 mainte-
nance system.
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estimations. However, phantom estimators provide the pos-
sibility for parallel computing because the plus and minus
phantoms can be simulated independently from the nominal
phantom. To explore the speed-up factor by using paral-
lel computing in gradient estimation is a topic of further
research.

6.3. Optimization

In this section, we perform a few simulation experiments
illustrating the use of the phantom estimator(s) for opti-
mization in the case of a 10-component maintenance sys-
tem. We use the SA iteration algorithm in Equation (2). For
SA, the parameter c in Equations (32) and (33) needs to be
updated per iteration, and the value of c will be denoted by
ck for the kth iteration. The choice of the gain sequences
(ak in Equation (2) and ck) is critical to the performance,
and we follow the practical suggestions for choosing these
parameters as proposed by Spall (1998).

Example 3. We first perform an optimization for a single-
type 10-out-of-10 maintenance system; i.e., N = 1� F = 1,

Figure 4. The SA iteration trace in the optimization
of a single-type 10-out-of-10 maintenance
system.
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Table 2. The optimization performance comparison
between FD and CPhE.

No. of Computation
�∗ C�T ��∗� iterations time (s)

FD 0�455579 37�130482 10 331�578
CPhE 0�444829 37�130362 5 163�578

and the horizon T = 20�000. Because N = 1, one can
just use FD to approximate the gradient information rather
than SP. The number of simulation runs in each iteration
is chosen as 20. By following the suggestions presented
in Spall (1998), we choose a = 0�02 and ak = a/�k + 1�.
We terminate the algorithm when the difference between
two successive iterations is smaller than 0.005 in three suc-
cessive iterates; i.e., �C�T ��k+1� − C�T ��k�� < 0�005. We
use CPhE with NPh = 1�000 to estimate the gradient infor-
mation. The iteration traces of both methods during the
SA optimization of a 10-component system are shown in
Figure 4.
The best solutions of both methods are shown in Table 2.

FD takes 10 iterations to obtain the optimal result of
C�T ��∗� = 37�130482 with �∗ = 0�455579, whereas CPhE
only needs 5 iterations to obtain the optimal result of
C�T ��∗� = 37�130362 with �∗ = 0�444829. Note that the
fitted curve of C�T ��� as a function of � is rather flat on
	0�4�0�5�; see Figure 4. This explains why FD and CPhE
yield similar values for C�T ��∗� with different values
for �∗. The algorithm using CPhE converges around 2 times
as fast as the one using the FD estimator.

Figure 5. The SA iteration trace in the optimization of a 2-type 9-out-of-10 maintenance system.
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Table 3. The optimization performance comparison
between SP and CPhE.

No. of Computation
��∗

1� �∗
2� C�T � �∗� iterations time (s)

SP �0�547110�0�674446� 23�818845 17 1459�576
CPhE �0�536216�0�687814� 23�816568 9 745�25

Next, we optimize 2-type maintenance systems. In these
cases, we use the SP method to approximate the gradient.

Example 4. We test a 2-type 9-out-of-10 maintenance sys-
tem. We use CPhE with NPh = 100 to estimate the gradient
information, and the number of runs per iteration is 20.
The value of parameters are chosen as a = 0�165�A = 2�
� = 0�602� c = 0�001, and � = 0�101. The algorithm
evolves as shown in Figure 5. The best solutions of both
methods are shown in Table 3. The SA algorithm using SP
takes 17 iterations converging to the optimal value, whereas
the one using CPhE only takes 9 iterations. Furthermore,
SP consumes almost twice the CPU time as CPhE to reach
the best solution.

7. Conclusion and Further Work
In this paper, we have established unbiased gradient estima-
tors based on measure-valued differentiation for the deriva-
tive of the average cost for a multicomponent system with
a general lifetime distribution with respect to the parame-
ter of an age-replacement policy. On a theoretical level, the
paper presents the first gradient estimator for a multicom-
ponent system with modified F -group failure replacement.
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On a practical level, we derive gradient estimators tailored
to situations typically encountered in practice, where the
best gradient estimation has to be found within a fixed sim-
ulation budget.
On a more general note, the study of this paper exem-

plifies the difficulty of comparison between different meth-
ods. We believe that our study highlights the need for a
framework for comparing gradient-based and gradient-free
methods as initiated by Pasupathy and Henderson (2006).
The study of maintenance systems with highly reliable

components has not been addressed in this paper. Simula-
tions of highly reliable systems take a long time to execute
because failures happen so rarely that gathering sufficient
failure statistics is extremely slow. For such highly reliable
systems, rare-event simulation techniques (e.g., importance
sampling) need to be applied. By following the analysis
presented in §5.1, one can derive a differential Markov
kernel for such a system and then obtain the phantom esti-
mator. However, a detailed analysis is a topic of further
research.
Phantom estimators obtain gradient information from

the difference between phantom processes. The shorter the
phantom processes need to be simulated, the more efficient
the phantom estimator becomes. How to find an efficient
coupling for the phantoms to improve the performance is a
topic of further research.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.
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