7 research outputs found
Effects of fractional order on performance of fosmc for speed control of PMSM
Fractional order sliding mode control has been applied for speed control of PMSM. However, in many previous works, the effects of the controller's parameters have not been studied. This paper investigates the effects of fractional order on performance of FOSMC speed control of PMSM. In this work, fractional order, α and β of FOSMS-PID were varied, and their performances were compared. The simulation and experimental results show that variation of order of fractional order integration, α and order of fractional order differentiation, β can affect the performance of the FOSMC-PID controller. Selection of α and β values determines balancing strategies between integral and differentiation portion of the controller. Proper value selection and combination of these variables can further contribute to obtain optimum speed tracking, disturbance rejection and chattering reduction abilities
Pembangunan prototaip sistem gelung tertutup pacuan motor segerak magnet kekal
Motor segerak magnet kekal (PMSM) digunakan secara meluas untuk aplikasi kuasa rendah dan sederhana serta dalam pacuan berprestasi tinggi. Motor ini digemari berbanding motor berus and sedikit demi sedikit menggantikan motor induksi dalam pelbagai bidang aplikasi kerana kelebihannya. Ramai penyelidik mencadangkan kaedah-kaedah kawalan baru bagi sistem pacuan PMSM. Namun begitu, sistem PMSM tidak linear dan mengandungi parameter-parameter yang berubah mengikut masa. Atas faktor ini, penyelidik tidak boleh hanya bergantung kepada keputusan simulasi untuk membuktikan kelebihan kawalan yang dicadangkan. Untuk mengesahkan keputusan yang diperolehi melalui simulasi, pengesahan eksperimen diperlukan, di mana prototaip sistem gelung tertutup pacuan PMSM perlu dibangunkan. Artikel ini menerangkan pembangunan sistem pacuan PMSM dengan maklum balas arus, halaju dan kedudukan gelung tertutup menggunakan papan kawalan dSpace DS1104 bagi sebuah PMSM 1.93kW tiga fasa dakap dalaman yang digunakan untuk pengesahan eksperimen bagi kawalan halaju kawalan mod gelongsor tertib pecahan yang dicadangkan. Dengan menggunakan prototaip ini, prestasi sebarang kaedah kawalan yang dicadangkan boleh disahkan dalam aplikasi sebenar. Prosedur perolehan yang bersesuaian bagi isyarat maklum balas seperti yang diterangkan dalam artikel ini adalah penting untuk memastikan ketepatan prestasi sistem gelung tertutup yang dibangunkan
Development of Edu-Fertiblox digital game using roblox as a teaching aid for the fertigation system topic in the design and technology subject form 1
A lack of practical facilities frequently causes problems for teachers and students. The Edu-Fertiblox digital game has been developed for the purpose of being a teaching aid (TA) for the topic of Fertigation Systems in Design Technology Subject Form 1. This study aimed to identify the needs of TAs for the topic of fertigation systems, develop the Edu-Fertiblox digital game as a TA, and assess the usability of the digital game. The development of this game is using the ADDIE model as a research design. The digital game was developed using Roblox Studio. After that, Edu-Fertiblox was evaluated for its usability by three informants, consisting of teaching staff who are experts in Design and Technology. The findings showed all the informants agreed that the Edu-Fertiblox digital game can be used as a teaching aid for the Fertigation System topic of Design and Technology Form 1
Fractional order sliding mode controller based on supervised machine learning techniques for speed control of PMSM
Tracking the speed and current in permanent magnet synchronous motors (PMSMs) for industrial applications is challenging due to various external and internal disturbances such as parameter variations, unmodelled dynamics, and external load disturbances. Inaccurate tracking of speed and current results in severe system deterioration and overheating. Therefore, the design of the controller for a PMSM is essential to ensure the system can operate efficiently under conditions of parametric uncertainties and significant variations. The present work proposes a PMSM speed controller using machine learning (ML) techniques for quick response and insensitivity to parameter changes and disturbances. The proposed ML controller is designed by learning fractional-order sliding mode control (FOSMC) controller behavior. The primary purpose of using ML in FOSMC is to avoid the self-tuning of the parameters and ensure the speed reaches the reference value in finite time with faster convergence and better tracking precision. Furthermore, the ML model does not require the mathematical model of the speed controller. In this work, several ML models are empirically evaluated on their estimation accuracy for speed tracking, namely ordinary least squares, passive-aggressive regression, random forest, and support vector machine. Finally, the proposed controller is implemented on a real-time hardware-in-the-loop (HIL) simulation platform from PLECS Inc. Comparative simulation and experimental results are presented and discussed. It is shown from the comparative study that the proposed FOSMC based on ML outperformed the traditional sliding mode control (SMC), which is more commonly used in industry in terms of tracking speed and accuracy
Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review
Permanent magnet synchronous motors (PMSMs) are known as highly efficient motors and are slowly replacing induction motors in diverse industries. PMSM systems are nonlinear and consist of time-varying parameters with high-order complex dynamics. High performance applications of PMSMs require their speed controllers to provide a fast response, precise tracking, small overshoot and strong disturbance rejection ability. Sliding mode control (SMC) is well known as a robust control method for systems with parameter variations and external disturbances. This paper investigates the current status of implementation of sliding mode control speed control of PMSMs. Our aim is to highlight various designs of sliding surface and composite controller designs with SMC implementation, which purpose is to improve controller’s robustness and/or to reduce SMC chattering. SMC enhancement using fractional order sliding surface design is elaborated and verified by simulation results presented. Remarkable features as well as disadvantages of previous works are summarized. Ideas on possible future works are also discussed, which emphasize on current gaps in this area of research
Robust Speed Control of PMSM Using Sliding Mode Control (SMC)—A Review
Permanent magnet synchronous motors (PMSMs) are known as highly efficient motors and are slowly replacing induction motors in diverse industries. PMSM systems are nonlinear and consist of time-varying parameters with high-order complex dynamics. High performance applications of PMSMs require their speed controllers to provide a fast response, precise tracking, small overshoot and strong disturbance rejection ability. Sliding mode control (SMC) is well known as a robust control method for systems with parameter variations and external disturbances. This paper investigates the current status of implementation of sliding mode control speed control of PMSMs. Our aim is to highlight various designs of sliding surface and composite controller designs with SMC implementation, which purpose is to improve controller’s robustness and/or to reduce SMC chattering. SMC enhancement using fractional order sliding surface design is elaborated and verified by simulation results presented. Remarkable features as well as disadvantages of previous works are summarized. Ideas on possible future works are also discussed, which emphasize on current gaps in this area of research
Status dan tahap penggunaan jentera dan mesin di kalangan kontraktor G7 di Malaysia
The wide use of machine and machinery in the construction industry can reduce the dependency on foreign workers.The Construction Industry Development Board is formulating a strategic plan to promote the use of machine and machinery in the construction industry. Therefore, this study aims to study the level and status of the usage machine and machinery among the G7 contractors at construction sites. The instrument used in the study consist of questionnaire and interviews. Based on the literature findings, there are 9 types
of machine and 9 types machinery used in the construction industry.The percentage use of machine and machinery as well as the level of mechanisation for each phase of construction is at level 1, where the machine and machinery is still driven by the operator and do not involved high technology. The main
recommendation in this study is to provide training on the latest information on machine and machinery and CPD (Continue Professional Development) training to promote the use of machine and machinery.In addition, the offering better incentives such as tax breaks and loan facilities should be awarded and provided by the government to activate the economic growth