49 research outputs found

    Synthesis and biological evaluation of ferrocene-based cannabinoid receptor 2 ligands

    Get PDF
    Ferrocene analogues of known fatty acid amide hydrolase inhibitors and CB2 ligands have been synthesized and characterized spectroscopically and crystallographically. The resulting bioorganometallic isoxazoles were assayed for their effects on CB1 and CB2 receptors as well as on FAAH. None had any FAAH activity but compound 3, 5-(2-(pentyloxy)phenyl)-N-ferrocenylisoxazole- 3-carboxamide, was found to be a potent CB2 ligand (Ki = 32.5 nM)

    Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ

    Get PDF
    5-aminosalicylic acid (5-ASA) is an antiinflammatory drug widely used in the treatment of inflammatory bowel diseases. It is known to inhibit the production of cytokines and inflammatory mediators, but the mechanism underlying the intestinal effects of 5-ASA remains unknown. Based on the common activities of peroxisome proliferator–activated receptor-γ (PPAR-γ) ligands and 5-ASA, we hypothesized that this nuclear receptor mediates 5-ASA therapeutic action. To test this possibility, colitis was induced in heterozygous PPAR-γ+/− mice and their wild-type littermates, which were then treated with 5-ASA. 5-ASA treatment had a beneficial effect on colitis only in wild-type and not in heterozygous mice. In epithelial cells, 5-ASA increased PPAR-γ expression, promoted its translocation from the cytoplasm to the nucleus, and induced a modification of its conformation permitting the recruitment of coactivators and the activation of a peroxisome-proliferator response element–driven gene. Validation of these results was obtained with organ cultures of human colonic biopsies. These data identify PPAR-γ as a target of 5-ASA underlying antiinflammatory effects in the colon

    Utilisation de l'outil informatique dans la conception rationnelle de médicaments

    No full text
    LILLE2-BU Santé-Recherche (593502101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Phenothiazine- and Carbazole-Cyanochalcones as Dual Inhibitors of Tubulin Polymerization and Human Farnesyltransferase

    No full text
    In the search for innovative approaches to cancer chemotherapy, a chemical library of 49 cyanochalcones, 1a-r, 2a-o, and 3a-p, was designed as dual inhibitors of human farnesyltransferase (FTIs) and tubulin polymerization (MTIs) (FTIs/MTIs), two important biological targets in oncology. This approach is innovative since the same molecule would be able to interfere with two different mitotic events of the cancer cells and prevent these cells from developing an emergency route and becoming resistant to anticancer agents. Compounds were synthesized by the Claisen–Schmidt condensation of aldehydes with N-3-oxo-propanenitriles under classical magnetic stirring and under sonication. Newly synthesized compounds were screened for their potential to inhibit human farnesyltransferase, tubulin polymerization, and cancer cell growth in vitro. This study allowed for the identification of 22 FTIs and 8 dual FTIs/MTIs inhibitors. The most effective molecule was carbazole-cyanochalcone 3a, bearing a 4-dimethylaminophenyl group (IC50 (h-FTase) = 0.12 µM; IC50 (tubulin) = 0.24 µM) with better antitubulin activity than the known inhibitors that were previously reported, phenstatin and (-)-desoxypodophyllotoxin. The docking of the dual inhibitors was realized in both the active site of FTase and in the colchicine binding site of tubulin. Such compounds with a dual inhibitory profile are excellent clinical candidates for the treatment of human cancers and offer new research perspectives in the search for new anti-cancer drugs

    Search for a pharmacophore SK channel blockers by molecular modeling

    Full text link
    Parmi les canaux ioniques impliqués dans le contrôle de l'activité neuronale, les canaux potassiques calcium-dépendants de basse conductance, dénommés canaux SK, constituent une cible thérapeutique intéressante. En effet, ils sous-tendent la posthyperpolarisation ("AfterHyperPolarization") de durée moyenne (mAHP) qui limite l'excitabilité de divers types de neurones du système nerveux central (SNC). Leur blocage pourrait être ainsi bénéfique dans le traitement de divers troubles du SNC comme la maladie de Parkinson, la dépression ou encore les désordres cognitifs. Jusqu'à présent, le bloqueur de référence des canaux SK est l’apamine, un octadécapeptide issu du venin d'abeille. En revanche, peu de composés synthétiques avec une affinité proche de celle de l’apamine ont été caractérisés. Dans ce contexte, nous avons développé un modèle pharmacophorique de bloqueurs non-sélectifs qui a révélé, entre autres, une distance optimale de 5.6 Å entre deux charges positives. Ce modèle sera le point de départ de futures investigations dans le développement de nouveaux bloqueurs des canaux SK

    Relationships between Th1 or Th2 iNKT cell activity and structures of CD1d-antigen complexes: meta-analysis of CD1d-glycolipids dynamics simulations.

    No full text
    A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1

    Ultrasounds-mediated 10-seconds synthesis of chalcones as potential farnesyltransferase inhibitors

    No full text
    International audienceA broad range of chalcones and derivatives were easily and rapidly synthesized, following Claisen-Schmidt condensation of (hetero)aryl ketones and (hetero)aryl aldehydes using a ultrasound probe. A comparison was made with classical magnetic stirring experiments, and an optimization study was realized, showing lithium hydroxide to be the best basic catalyst of the studied condensations. By-products of the reactions (β-hydroxy-ketone, diketones, and cyclohexanols) were also isolated. All compounds were evaluated in vitro for their ability to inhibit human farnesyltransferase, a protein implicated in cancer and rare diseases and on the NCI-60 cancer cell lines panel. Molecules showed inhibitory activity on the target protein and cytostatic effect on different cell lines with particular activity against MCF7, breast cancer cells

    Novel indolizine derivatives with unprecedented inhibitory activity on human farnesyltransferase.

    No full text
    International audienceThe rational structural modification of new substituted indolizin-3-yl(phenyl)methanones 1a-i, 2a-i and 3a-i has greatly improved human farnesyltransferase inhibition. The para-bromophenyl analog 2f bearing an ester unit on the indolizine ring demonstrates the highest inhibition potential, with IC50 value of 1.3±0.2 μM. The amidic series 1a-i proves to be the most promising for future modulations, particularly at the triple bond level

    Synthesis and Radioligand Binding Studies of Bis-Isoquinolinium Derivatives as Small Conductance Ca(2+)-Activated K(+) Channel Blockers

    Full text link
    Starting from the scaffold of N-methyllaudanosine and N-methylnoscapine, which are known small conductance Ca2+-activated K+ channel blockers, original bis-isoquinolinium derivatives were synthezised and evaluated using binding studies, electrophysiology, and molecular modeling. These quaternary compounds are powerful blockers, and the most active ones have 10 times more affinity for the channels than dequalinium. The unsubstituted compounds possess a weaker affinity than the analogues having a 6,7-dimethoxy- or a 6,7,8-trimethoxy substitution. The length of the linker has no influence in the alkane derivatives. In relation to the xylene derivatives, the affinities are higher for the ortho and meta isomers. These results are well corroborated by a molecular modeling study. Finally, the most effective compounds have been tested in electrophysiological experiments on midbrain dopaminergic neurons and demonstrate the blocking potential of the apamin-sensitive after-hyperpolarization
    corecore