467 research outputs found
Madness decolonized?: Madness as transnational identity in Gail Hornsteinâs Agnesâs Jacket
The US psychologist Gail Hornsteinâs monograph Agnesâs Jacket: A Psychologistâs Search for the Meanings of Madness (2009) is an important intervention in the identity politics of the mad movement. Hornstein offers a resignified vision of mad identity that embroiders the central trope of an âanti-colonialâ struggle to reclaim the experiential world âcolonizedâ by psychiatry. A series of literal and figurative appeals make recourse to the inner world and (corresponding) cultural world of the mad, as well as to the ethno-symbolic cultural materials of dormant nationhood. This rhetoric is augmented by a model in which the mad comprise a diaspora without an origin, coalescing into a single transnational community. The mad are also depicted as persons displaced from their metaphorical homeland, the âinnerâ world âcolonizedâ by the psychiatric regime. There are a number of difficulties with Hornsteinâs rhetoric, however. Her âethnicity-and-rightsâ response to the oppression of the mad is symptomatic of Western parochialism, while her proposed transmutation of putative psychopathology from limit upon identity to parameter of successful identity is open to contestation. Moreover, unless one accepts Hornsteinâs porous vision of mad identity, her self-ascribed insider status in relation to the mad community may present a problematic âre-colonizationâ of mad experience
One-carbon metabolism in cancer
Cells require one-carbon units for nucleotide synthesis, methylation and reductive metabolism, and these pathways support the high proliferative rate of cancer cells. As such, anti-folates, drugs that target one-carbon metabolism, have long been used in the treatment of cancer. Amino acids, such as serine are a major one-carbon source, and cancer cells are particularly susceptible to deprivation of one-carbon units by serine restriction or inhibition of de novo serine synthesis. Recent work has also begun to decipher the specific pathways and sub-cellular compartments that are important for one-carbon metabolism in cancer cells. In this review we summarise the historical understanding of one-carbon metabolism in cancer, describe the recent findings regarding the generation and usage of one-carbon units and explore possible future therapeutics that could exploit the dependency of cancer cells on one-carbon metabolism
Evidence of maternal QTL affecting growth and obesity in adult mice
Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individualâs phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspringâs adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180Â Mb with CAST/EiJ donor regions on the background of C57BL/6Â J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111Â Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (PÂ <Â 5Â ĂÂ 10â4) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies
Anterior interosseous nerve syndrome: retrospective analysis of 14 patients
Introduction: The anterior interosseous nerve (AIN) is a only motor nerve innervating the deep muscles of the forearm. Its compression is rare. We present a retrospective analysis of 14 patients with an AIN syndrome with a variety of clinical manifestations who underwent operative and conservative treatment. Patients and methods: Fourteen patients (six female, eight male, mean age 48 ± 9 years) were included. In six patients, the right limb was affected, and in eight patients the left limb. Conservative treatment was started for every patient. If no signs of recovery appeared within 3 months, operative exploration was performed. Final assessment was performed between 2 and 9 years after the onset of paralysis (mean duration of follow-up 46 ± 11 months). Patients were examined clinically for return of power, range of motion, pinch and grip strengths. Also the disability of the arm, shoulder, and hand (DASH) score was calculated. Results: Seven of our 14 patients had incomplete AIN palsy with isolated total loss of function of flexor pollicis longus (FPL), five of FPL and flexor digitorum profundus (FDP)1 simultaneously, and two of FDP1. Weakness of FDP2 could be seen in four patients. Pronator teres was paralysed in two patients. Pain in the forearm was present in nine patients. Four patients had predisposing factors. Eight patients treated conservatively exhibited spontaneous recovery from their paralysis during 3-12 months after the onset. In six patients, the AIN was explored 12 weeks after the initial symptoms and released from compressing structures. Thirteen patients showed good limb function. In one patient with poor result a tendon transfer was necessary. The DASH score of patients treated conservatively and operatively presented no significant difference. Conclusion: AIN syndrome can have different clinical manifestations. If no signs of spontaneous recovery appear within 12 weeks, operative treatment should be performed
Learning a peptide-protein binding affinity predictor with kernel ridge regression
We propose a specialized string kernel for small bio-molecules, peptides and
pseudo-sequences of binding interfaces. The kernel incorporates
physico-chemical properties of amino acids and elegantly generalize eight
kernels, such as the Oligo, the Weighted Degree, the Blended Spectrum, and the
Radial Basis Function. We provide a low complexity dynamic programming
algorithm for the exact computation of the kernel and a linear time algorithm
for it's approximation. Combined with kernel ridge regression and SupCK, a
novel binding pocket kernel, the proposed kernel yields biologically relevant
and good prediction accuracy on the PepX database. For the first time, a
machine learning predictor is capable of accurately predicting the binding
affinity of any peptide to any protein. The method was also applied to both
single-target and pan-specific Major Histocompatibility Complex class II
benchmark datasets and three Quantitative Structure Affinity Model benchmark
datasets.
On all benchmarks, our method significantly (p-value < 0.057) outperforms the
current state-of-the-art methods at predicting peptide-protein binding
affinities. The proposed approach is flexible and can be applied to predict any
quantitative biological activity. The method should be of value to a large
segment of the research community with the potential to accelerate
peptide-based drug and vaccine development.Comment: 22 pages, 4 figures, 5 table
Buffy coat specimens remain viable as a DNA source for highly multiplexed genome-wide genetic tests after long term storage
<p>Abstract</p> <p>Background</p> <p>Blood specimen collection at an early study visit is often included in observational studies or clinical trials for analysis of secondary outcome biomarkers. A common protocol is to store buffy coat specimens for future DNA isolation and these may remain in frozen storage for many years. It is uncertain if the DNA remains suitable for modern genome wide association (GWA) genotyping.</p> <p>Methods</p> <p>We isolated DNA from 120 Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial buffy coats sampling a range of storage times up to 9 years and other factors that could influence DNA yield. We performed TaqMan SNP and GWA genotyping to test whether the DNA retained integrity for high quality genetic analysis.</p> <p>Results</p> <p>We tested two QIAGEN automated protocols for DNA isolation, preferring the Compromised Blood Protocol despite similar yields. We isolated DNA from all 120 specimens (yield range 1.1-312 ug per 8.5 ml ACD tube of whole blood) with only 3/120 samples yielding < 10 ug DNA. Age of participant at blood draw was negatively associated with yield (mean change -2.1 ug/year). DNA quality was very good based on gel electrophoresis QC, TaqMan genotyping of 6 SNPs (genotyping no-call rate 1.1% in 702 genotypes), and excellent quality GWA genotyping data (maximum per sample genotype missing rate 0.64%).</p> <p>Conclusions</p> <p>When collected as a long term clinical trial or biobank specimen for DNA, buffy coats can be stored for up to 9 years in a -80degC frozen state and still produce high yields of DNA suitable for GWA analysis and other genetic testing.</p> <p>Trial Registration</p> <p>The Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial is registered with ClinicalTrials.gov, number <a href="http://www.clinicaltrials.gov/ct2/show/NCT00000620">NCT00000620</a>.</p
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Todayâs biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ââBackyard biodiversityââ, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ââbackyard biodiversityââ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
- âŠ