6 research outputs found

    Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study

    Get PDF
    Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared using three different portions of MWCNT and NS. Electron microscopy images indicated a uniform distribution of nanoparticles in the cement matrix, enhanced hydration reactions, and increased density. Based on the experiments’ outcomes, the combined utilization of silica and carbon nanomaterials in the cement paste did not necessarily result in the maximum compressive and flexural strengths. Furthermore, it was observed that the use of higher percentages of pristine NS in the absence of MWCNT can lead to further enhancement of strength properties of the cement paste

    Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study

    No full text
    Considering the remarkable characteristics of nanomaterials, previous research studies investigated the effects of incorporating different types of these materials on improving the concrete properties. However, further studies are required to evaluate the complementary hybridization and synergistic influence of nanomaterials. In this research, the combined effect of adding nano silica particles (NS) and multi-walled carbon nanotubes (MWCNT) on enhancing both the compressive and flexural strengths of the cement paste was investigated. Moreover, the morphology of the interface between cement paste and aggregates was studied by scanning electron microscopy (SEM). The mixtures were prepared using three different portions of MWCNT and NS. Electron microscopy images indicated a uniform distribution of nanoparticles in the cement matrix, enhanced hydration reactions, and increased density. Based on the experiments’ outcomes, the combined utilization of silica and carbon nanomaterials in the cement paste did not necessarily result in the maximum compressive and flexural strengths. Furthermore, it was observed that the use of higher percentages of pristine NS in the absence of MWCNT can lead to further enhancement of strength properties of the cement paste

    a case-control study

    No full text

    Epigenetic drugs as new emerging therapeutics: What is the scale's orientation of application and challenges?

    No full text
    Epigenetics is the study of heritable changes in gene expression or function without altering the DNA sequence. Important factors are part of epigenetic events, such as methylation, DNA histone rearrangements, nucleosome transposition, and non-coding RNAs. Dysregulated epigenetic mechanics are associated with various cancers' initiation, development, and metastasis. It is known that the occurrence and development of cancer can be controlled by regulating unexpected epigenetic events. Epi-drugs are used singly or in combination with chemotherapy and enhance antitumor activity, reduce drug resistance, and stimulate the host immune response. Despite these benefits, epigenetic therapy as a single therapy or in combination with other drugs leads to adverse effects. This review article introduces and compares the advantages, disadvantages, and side effects of using these drugs for the first time since their introduction. Also, this article describes the mechanism of action of various epigenetic drugs. Recommendations for future use of epigenetic drugs as cancer therapeutics are suggested as an overall conclusion

    Detection of dopamine receptors using nanoscale dendrimer for potential application in targeted delivery and whole-body imaging: synthesis and in vivo organ distribution

    No full text
    Dopamine is one of the most important neurotransmitters released by neurons in the central nervous system, and a variety of neurological illnesses and mental disorders are associated with impairments in the secretion and functionality of dopamine. Dopamine, depending on the type of receptors, can act as a stimulant or an inhibitor. In this study, dendrimer-conjugated dopamine was utilized as a chelating agent for Technetium-99m to investigate the organ distribution of this compound in vivo using the single-photon emission computed tomography (SPECT) technique. For this purpose, dendrimers were synthesized using polyethylene glycol diacid and citric acid precursors, and dopamine was conjugated to the dendrimer using EDC/NHS cross-linker. The results showed no sign of toxicity of the dopamine-functionalized dendrimers on HEK-293 cell lines. The optimization of labeling conditions was conducted using the experimental design method (i.e., conjugate value, pH, and the amount of reducing agent), and then labeling efficiency was evaluated by thin-layer chromatography (TLC). Finally, the study of organ distribution in normal mice using SPECT imaging and comparing it with gene expression in different organs revealed that dopamine D1 receptors exhibited the highest accumulation in the liver and that the drug retained its specificity
    corecore