110 research outputs found

    A rare variation of the inferior alveolar artery with potential clinical consequences

    Get PDF
    Variations of the inferior alveolar artery are seemingly quite rare, especially with regard to its origin from the maxillary artery. We present an unusual case of an inferior alveolar artery that originated from the external carotid artery. To the best of our knowledge, our case is one of only two reports of the inferior alveolar artery arising from the external carotid artery. The clinician who deals with the mandibular region should be aware of such a variation in the arterial architecture

    Malignant fibrous histiocytoma of the spermatic cord: a case report and review of the literature

    Get PDF
    Malignant fibrous histiocytoma (MFH) is a morphologically ill-defined tumour of the soft tissues and may involve nearly every organ of the body. MFH of the spermatic cord represents an extremely rare entity and reports of it in the literature are limited. We report a 69-year-old man found to have a left spermatic cord MFH and retroperitoneal and mediastinal lymphadenopathy, who was treated with radical orchiectomy and adjuvant chemotherapy. The morphological findings of the spermatic tumour are presented and the literature is reviewed to clarify the potential diagnostic/therapeutic approaches and the prognosis related to spermatic cord MFH

    Integration Concept of Injection, Forming and Foaming: A Practical Approach to Manufacture Hybrid Structures

    Get PDF
    Motivated by the concept of the integrative production systems, the hybrid process of polymer injection molding and sheet metal forming, known as polymer injection forming (PIF), has been introduced to manufacture sheet metal-polymer components in a single operation. Despite the wide potential application of this technology, its implementation in actual industrial production has been hindered due to several challenges; a thick layer of polymer where there is deep deformation, non-uniform deformation due to pressure loss and the opposite phenomena of shrinkage and springback. To mitigate these practical issues, the novel idea of integrating supercritical fluid (Sc.F.) technology with the PIF process is introduced in this work. As the proposed technology is a manufacturing innovation, with no available information in the literature correlating to this concept, two sets of experiments are designed to investigate the feasibility of this integration. In the first set, the effect of blank material and shot volume as design variables were investigated over a range of Sc.F. weight percentage. To improve the cell morphology in experiments with the low-strength sheet material, several other processing scenarios are explored in the second set of experiments. The results of this study clearly demonstrate the capabilities of this concept manufacturing process in terms of initiating the foaming process within the simultaneous injection/forming process, ensuring weight reduction (of up to 16%) and complete elimination of issues related to shrinkage

    Theoretical and practical convergence of a self-adaptive penalty algorithm for constrained global optimization

    Get PDF
    This paper proposes a self-adaptive penalty function and presents a penalty-based algorithm for solving nonsmooth and nonconvex constrained optimization problems. We prove that the general constrained optimization problem is equivalent to a bound constrained problem in the sense that they have the same global solutions. The global minimizer of the penalty function subject to a set of bound constraints may be obtained by a population-based meta-heuristic. Further, a hybrid self-adaptive penalty firefly algorithm, with a local intensification search, is designed, and its convergence analysis is established. The numerical experiments and a comparison with other penalty-based approaches show the effectiveness of the new self-adaptive penalty algorithm in solving constrained global optimization problems.The authors would like to thank the referees, the Associate Editor and the Editor-in-Chief for their valuable comments and suggestions to improve the paper. This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT - Funda¸c˜ao para a Ciˆencia e Tecnologia within the projects UID/CEC/00319/2013 and UID/MAT/00013/2013.info:eu-repo/semantics/publishedVersio

    Polyaniline/palladium nanohybrids for moisture and hydrogen detection.

    Get PDF
    Palladium nanoparticles display fascinating electronic, optical and catalytic properties, thus they can be used for various applications such as sensor fabrication. Conducting polymers such as polyaniline have also been widely used in sensor technology due to its cost effectiveness, versatility, and ease of synthesis. In this research, attention was given to unify the exceptional properties of these two materials and construct palladium nanoparticle coated polyaniline films to detect hydrogen and moisture. Electrochemical polymerization of aniline was carried out on gold sputtered epoxy resin boards. Polyaniline film was generated across a gap of 0.2 mm created by a scratch made on the gold coating prior to electrochemical polymerization. A palladium nanoparticle dispersion was prepared using sonochemical reduction method and coated on to polyaniline film using drop-drying technique. Polyaniline only films were also fabricated for comparative analysis. Sensitivity of films towards humidity and hydrogen was evaluated using impedance spectroscopy in the presence of the respective species. According to the results, polyaniline films exhibited an impedance drop in the presence of humidity and the response was significantly improved once palladium nanoparticles were incorporated. Interestingly, polyaniline only films did not respond to hydrogen. Nevertheless, palladium nanoparticle coated polyaniline films exhibited remarkable response towards hydrogen

    Epileptogenic potential of mefloquine chemoprophylaxis: a pathogenic hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine has historically been considered safe and well-tolerated for long-term malaria chemoprophylaxis, but prescribing it requires careful attention in order to rule out contraindications to its use. Contraindications include a history of certain neurological conditions that might increase the risk of seizure and other adverse events. The precise pathophysiological mechanism by which mefloquine might predispose those with such a history to seizure remains unclear.</p> <p>Presentation of the hypothesis</p> <p>Studies have demonstrated that mefloquine at doses consistent with chemoprophylaxis accumulates at high levels in brain tissue, which results in altered neuronal calcium homeostasis, altered gap-junction functioning, and contributes to neuronal cell death. This paper reviews the scientific evidence associating mefloquine with alterations in neuronal function, and it suggests the novel hypothesis that among those with the prevalent EPM1 mutation, inherited and mefloquine-induced impairments in neuronal physiologic safeguards might increase risk of GABAergic seizure during mefloquine chemoprophylaxis.</p> <p>Testing and implications of the hypothesis</p> <p>Consistent with case reports of tonic-clonic seizures occurring during mefloquine chemoprophylaxis among those with family histories of epilepsy, it is proposed here that a new contraindication to mefloquine use be recognized for people with EPM1 mutation and for those with a personal history of myoclonus or ataxia, or a family history of degenerative neurologic disorder consistent with EPM1. Recommendations and directions for future research are presented.</p

    Sustainable conversion of agro-wastes into useful adsorbents

    Get PDF
    Preparation and characterization of raw andactivated carbon derived from three different selectedagricultural wastes: kola nut pod raw and activated (KNPRand KNPA), bean husk raw and activated (BHR and BHA)and coconut husk raw and activated (CHR and CHA) wereinvestigated, respectively. Influences of carbonization andacid activation on the activated carbon were investigatedusing SEM, FTIR, EDX, pHpzcand Boehm titration tech-niques, respectively. Carbonization was done at 350°C for2 h followed by activation with 0.3 M H3PO4(ortho-phosphoric acid). Results obtained from SEM, FTIR, andEDX revealed that, carbonization followed by acid acti-vation had a significant influence on morphology and ele-mental composition of the samples. SEM showed well-developed pores on the surface of the precursors after acidtreatment, FTIR spectra revealed reduction, broadening,disappearance or appearance of new peaks after acid acti-vation. EDX results showed highest percentage of carbonby atom respectively in the order BHA[KNPA[CHArespectively. The pHpzcwas found to be 5.32, 4.57 and 3.69for KNPA, BHA and CHA, respectively. Boehm titrationresult compliments that of pHpzc, indicating that the sur-faces of the prepared adsorbents are predominantly acidic.This study promotes a sustainable innovative use of agro-wastes in the production of cheap and readily availableactivated carbons, thereby ensuring more affordable waterand effluent treatment adsorbents

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
    corecore