11 research outputs found

    Performance of Distributed CFAR Processors in Pearson Distributed Clutter

    No full text
    <p/> <p>This paper deals with the distributed constant false alarm rate (CFAR) radar detection of targets embedded in heavy-tailed Pearson distributed clutter. In particular, we extend the results obtained for the cell averaging (CA), order statistics (OS), and censored mean level CMLD CFAR processors operating in positive alpha-stable (P&amp;S) random variables to more general situations, specifically to the presence of interfering targets and distributed CFAR detectors. The receiver operating characteristics of the greatest of (GO) and the smallest of (SO) CFAR processors are also determined. The performance characteristics of distributed systems are presented and compared in both homogeneous and in presence of interfering targets. We demonstrate, via simulation results, that the distributed systems when the clutter is modelled as positive alpha-stable distribution offer robustness properties against multiple target situations especially when using the "OR" fusion rule.</p

    Using fractal dimension to target detection in bistatic SAR data

    No full text
    International audienc

    Distributed clutter-map constant false alarm rate detection using fuzzy fusion rules

    No full text
    The performance of distributed adaptive clutter map constant false alarm rate (CMAP-CFAR) detection system using fuzzy fusion rules with homogeneous and non-homogeneous background is considered in this paper. We assume that the sensors are identical and the target is fluctuating according to Swerling I model embedded in a white Gaussian noise with unknown variance. Each detector computes the value of the membership function to the false alarm space from the previous samples of the cell under test and transmits it to the fusion center. These values are combined according to fuzzy fusion rules to produce a global membership function to the false alarm space. The obtained results showed that the best performance was obtained while using the “algebraic product” fuzzy rule and the probability of detection increases significantly with the number of detectors
    corecore