32 research outputs found

    Inventory of poisonings and toxicological studies carried out on Atractylis gummifera L.: A review

    Get PDF
    Atractylis gummifera L. belongs to the family Asteraceae is widely used in traditional Moroccan medicine for its therapeutic effects (diuretic, purgative, emetic, abortive), but it causes serious and fatal poisonings, hence the objective of this work is to describe the current state of intoxication caused by A. gummifera in the Mediterranean and to summarize the toxicological studies carried out on this plant. The working methodology we adopted consisted in collecting data published in Arabic, French and English in specialized articles, books and on websites. Research results showed that the Centre Anti Poison and Pharmacovigilance of Morocco declared A. gummifera was in second place in the occurrence of poisonings in between January 1980 and December 2008. The synthesis of experimental work on plant toxicology showed that the lethal dose of A. gummifera varies according to the animal model used (rat or mouse), the route of administration (intraperitoneal, oral or intravenous) and the part of the plant used. The root has been found to be the most toxic part of the plant. The toxicity of A. gummifera is due to atractyloside and gummiferine, which are inhibitors of oxidative phosphorylation that prevent the formation of ATP from ADP in intracellular organelles. This study shows the interest in raising public awareness of the toxicity of A. gummifera and in rationalizing its use in traditional medicine

    Synthesis, and evaluation of α-amylase and α-glucosidase inhibitory potential of new pyrazolo[3,4-d]pyrimidine derivatives

    No full text
    A series of new pyrazolo[3,4-d]pyrimidine compounds were synthesized in excellent yields via sulfuration and 1,3-dipolar cycloaddition and confirmed by MS, FT-IR and NMR techniques. All the prepared compounds were screened in vitro for their α-amylase and α-glucosidase inhibitory activities. Preliminary results indicated that some target compounds exhibited promising α-amylase and α-glucosidase inhibitory activity potency. Among the tested products, the cycloadduct f was found most active inhibitor (IC50 = 134.30 μM) for α-amylase, and the sulphur product b is the most active inhibitor (IC50 = 16.37 μM) for α-glucosidase

    In vivo anti-diabetic effect of aqueous and methanolic macerated extracts of Atractylis gummifera

    Get PDF
    The anti-diabetic effect of Atractylis gummifera (plant used in traditional Moroccan medicine) has been evaluated in type 2 diabetic mice model. The mice were divided into five groups: Normal control, diabetic control, diabetic treated with aqueous macerate (500 mg/kg), diabetic treated with methanol macerate (500 mg/kg) and diabetic treated with metformin (300 mg/kg). The treatment of the mice was performed by daily gastric gavage for 5 weeks. The monitoring of the mice was carried out weekly by fasting glucose and measurement of biochemical parameters at the end of treatment. The aqueous macerate of A. gummifera was most effective that reduced the fasting blood glucose with 62.7%. In addition, this extract restored the biochemical parameters of diabetic mice to normal

    Phytochemical screening and in vitro evaluation of alpha amylase, alpha glucosidase and beta galactosidase inhibition by aqueous and organic Atractylis gummifera L. extracts

    Get PDF
    Diabetes is a chronic condition which is increasingly progressing throughout the world. To treat it, several methods are used, among which is medicinal plants that still have an unknown mechanism of action. The objective of this work is to evaluate the in vitro hypoglycemic effect of the extracts of the underground part of Atractylis gummifera, a member of Asteraceae used in traditional Moroccan medicine. A phytochemical study of the aqueous extracts (decocted, infused and macerated) and organic extracts (methanol, methanol macerate, chloroformic, ethyl acetate and petroleum ether), and a phytochemical screening of the different secondary metabolites was done. The antidiabetic power of the extracts of A. gummifera by testing the inhibitory activity of ?-amylase, ?-glucosidase and ?-galactosidase, which are enzymes responsible for the digestion of polysaccharides was determined. The extracts of A. gummifera are very rich in flavonoids and tannins, and are inhibitory to?-amylase and ?-glucosidase, mainly the macerate of methanol with IC50 values of 0.557 ± 0.013 and 0.743 ± 0.017 mg / mL respectively. Higher ?-galactosidase inhibitory potential than quercetin was observed for aqueous macerates and methanol with IC50 values of 2.23 ± 0.012 and 2.443 ± 0.071 mg / mL respectively. The extracts of A. gummifera possess a significant inhibitory activity of the alpha amylase and alpha glucosidase and beta-galactosidase enzymes, in particular the macerate of methanol followed by the aqueous macerate, among the eight extracts tested

    Antioxidant Activity and Inhibitory Potential of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aerial Parts Extracts against Key Enzymes Linked to Hyperglycemia

    No full text
    Cistus genus (Cistaceae) comprises several medicinal plants used in traditional medicines to treat several pathological conditions including hyperglycemia. These include Cistus salviifolius L. (CS) and Cistus monspeliensis L. (CM), still not fully explored as a source of metabolites with therapeutic potential for human diseases. In this study, the antioxidant α-amylase and α-glucosidase enzyme inhibitory effects of aqueous and hydromethanolic extracts from the aerial parts of Moroccan CS and CM were investigated. Antioxidant activity has been assessed using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α-amylase and α-glucosidase inhibitory activity has been assessed using an in vitro model. Moreover, mineral and phenolic contents of CS and CM were analyzed. The extracts of both species exhibited potent antioxidant activity in all used systems and possess strong inhibitory effect towards α-glucosidase (IC50: 0.95±0.14 to 14.58±1.26 μg/mL) and significant inhibitory potential against α-amylase (IC50: 217.10±0.15 to 886.10±0.10 μg/mL). Furthermore, the result showed high levels of phenolic content and unexpectedly some higher levels of mineral content in CS. The results suggest that the phenolic rich extracts of CS and CM may have a therapeutic potential against diseases associated with oxidative stress and may be useful in the management of hyperglycemia in diabetic patients

    Ethnobotanical Survey of Medicinal Plants Used by Traditional Healers to Treat Diabetes in the Taza Region of Morocco

    No full text
    Type 2 diabetes is one of the noncommunicable diseases that is becoming a pandemic in Africa. In Morocco, traditional healers have started to use herbal medicines for the treatment of diabetes either individually or in combination with food. The current study aimed to perform an ethnobiological survey of antidiabetic plants use in the Taza region of Morocco. A total of 193 traditional healers were interviewed using a semistructured questionnaire. Data collected were analyzed utilizing the use value (UV), fidelity level (FL), and relative frequency citation (RFC) indices. Forty-six plant species belonging to 28 families were recorded for the treatment of diabetes in the Taza region of Morocco. The most frequently cited plant species are Salvia officinalis, Marrubium vulgare, and Ajuga iva. Lamiaceae, Asteraceae, and Fabaceae were the most reported families. Leaves are the most used part of plants to prepare drugs, the decoction is the preferred mode of preparation, and remedies are often administered orally. Interestingly, Cytisus battandieri, Urginea maritima, Plantago ovata, and Ziziphus jujuba were reported as new medicinal plants used to treat diabetes in the Taza region of Morocco. People in the Taza region still rely on indigenous plants for their basic healthcare needs. Further research should be carried out to validate the antidiabetic effect of the newly reported plant species. This validation can be investigated by the determination of bioactive compounds and evaluation of their in vitro and in vivo antidiabetic effects

    Evaluation of In Vitro Antioxidant and Antidiabetic Activities of Aristolochia longa Extracts

    No full text
    Oxidative stress plays a major role in diabetic physiopathology; hence, the interest of using natural antioxidants as therapeutic tools exists. The aim of this study was the evaluation of in vitro antioxidant activity and inhibitory potential of organic extracts from Aristolochia longa roots against key enzymes linked to hyperglycemia. Antioxidant activity was performed using 2,2′-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals and ferric reducing/antioxidant power (FRAP) methods. The α-Glucosidase and β-Galactosidase inhibitory activities were investigated using an in vitro model. Moreover, phytochemical analysis of tested extracts was carried out. The aqueous fraction of this herb exhibited the highest antioxidant activity for both DPPH and ABTS methods, IC50=125.40±2.40 μg/mL and IC50=65.23±2.49 μg/mL, respectively. However, the ethyl acetate fraction possessed the strongest inhibitory effect towards α-Glucosidase (IC50=1.112±0.026 mg/mL). Furthermore, the result showed high levels of phenolic content. The results showed that this plant could be a significant source of medically important natural compounds

    Comparative Study of Leaf and Rootstock Aqueous Extracts of Foeniculum vulgare on Chemical Profile and In Vitro Antioxidant and Antihyperglycemic Activities

    No full text
    Foeniculum vulgare is a medicinal plant used in Moroccan folk medicine to treat several diseases such as diabetes. The aim of this study was to determine the phenolic bioactive compounds and to evaluate the antioxidant and antihyperglycemic activities of Foeniculum vulgare leaf and rootstock extracts. Phenolic compounds of F. vulgare rootstock and leaf extracts were determined using HPLC-DAD-QTOFMS analysis. The antioxidant activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals. Moreover, the in vitro antihyperglycemic effects were tested by measuring the inhibition of α-amylase and α-glucosidase activities. HPLC-DAD-QTOFMS analysis identified thirty-two phenolic components in both leaf and rootstock extracts. Caffeic acid, quinic acid, and chlorogenic acid were the major compounds of F. vulgare leaf extract (FVLE), while the main compound of F. vulgare rootstock extracts (FVRE) was quinic acid. In the DPPH assay, F. vulgare leaf extract showed important antioxidant activity (IC50 = 12.16 ± 0.02 μg/mL) than F. vulgare rootstock extract (IC50 = 34.36 ± 0.09 μg/mL). Moreover, fennel leaf extracts revealed also the most powerful antioxidant activity (IC50 = 22.95 ± 0.4 μg/mL) in the ABTS assay. The in vitro antihyperglycemic activity showed that F. vulgare rootstock extract exhibited a remarkable inhibitory capacity (IC50 = 194.30 ± 4.8 μg/mL) of α-amylase compared with F. vulgare leaf extract (IC50 = 1026.50 ± 6.5 μg/mL). Furthermore, the inhibition of α-glucosidase was more importantly with F. vulgare rootstock (IC50 of 165.90 ± 1.2 μg/mL) than F. vulgare leaf extracts (203.80 ± 1.3 μg/mL). The funding of this study showed that F. vulgare rootstock and leaf extracts presented several phenolic compounds and showed important antioxidant and antidiabetic effects. We suggest that the identified molecules are responsible for the obtained activities. However, further studies focusing on the isolation and the determination of antioxidant and antidiabetic effects of F. vulgare rootstock and leaf main compounds are required
    corecore