4 research outputs found

    Effective Strategy toward Obtaining Reliable Breakthrough Curves of Solid Adsorbents

    No full text
    Metal–organic frameworks (MOFs) have demonstrated their versatility in a wide range of applications, including chemical separation, gas capture, and storage. In industrial adsorption processes, MOFs are integral to the creation of selective gas adsorption fixed beds. In this context, the assessment of their separation performance under relevant conditions often relies on breakthrough experiments. One aspect frequently overlooked in these experiments is the shaping of MOF powders, which can significantly impact the accuracy of breakthrough results. In this study, we present an approach for immobilizing MOF particles on the surface of glass beads (GBs) utilizing trimethylolpropane triglycidyl ether (TMPTGE) as a binder, leading to the creation of MOF@GB materials. We successfully synthesized five targeted MOF composites, namely, SIFSIX-3-Ni@GB, CALF-20@GB, UiO-66@GB, HKUST-1@GB, and MOF-808@GB, each possessing distinct pore sizes and structural topologies. Characterization studies employing powder X-ray diffraction and adsorption isotherm analyses demonstrated that MOFs@GB retained their crystallinity and 73–90% of the Brunauer–Emmett–Teller area of their parent MOFs. Dynamic breakthrough experiments revealed that, in comparison to their parent MOFs, MOF@GB configurations enhanced the accuracy of breakthrough measurements by mitigating pressure buildup and minimizing reductions in the gas flow rate. This work underscores the significance of meticulous experimental design, specifically in shaping MOF powders, to optimize the efficacy of breakthrough experiments. Our proposed strategy aims to provide a versatile platform for MOF powder processing, thereby facilitating more reliable breakthrough experiments

    Rationally Tailored Mesoporous Hosts for Optimal Protein Encapsulation

    No full text
    Proteins play important roles in the therapeutic, medical diagnostic, and chemical catalysis industries. However, their potential is often limited by their fragile and dynamic nature outside cellular environments. The encapsulation of proteins in solid materials has been widely pursued as a route to enhance their stability and ease of handling. Nevertheless, the experimental investigation of protein interactions with rationally designed synthetic hosts still represents an area in need of improvement. In this work, we leveraged the tunability and crystallinity of metal–organic frameworks (MOFs) and developed a series of crystallographically defined protein hosts with varying chemical properties. Through systematic studies, we identified the dominating mechanisms for protein encapsulation and developed a host material with well-tailored properties to effectively encapsulate the protein ubiquitin. Specifically, in our mesoporous hosts, we found that ubiquitin encapsulation is thermodynamically favored. A more hydrophilic encapsulation environment with favorable electrostatic interactions induces enthalpically favored ubiquitin–MOF interactions, and a higher pH condition reduces the intraparticle diffusion barrier, both leading to a higher protein loading. Our findings provide a fundamental understanding of host–guest interactions between proteins and solid matrices and offer new insights to guide the design of future protein host materials to achieve optimal protein loading. The MOF modification technique used in this work also demonstrates a facile method to develop materials easily customizable for encapsulating proteins with different surface properties

    Biomimetic Mineralization of Large Enzymes Utilizing a Stable Zirconium-Based Metal-Organic Frameworks

    No full text
    Enzymes are natural catalysts for a wide range of metabolic chemical transformations, including selective hydrolysis, oxidation, and phosphorylation. Herein, we demonstrate a strategy for the encapsulation of enzymes within a highly stable zirconium-based metal-organic framework. UiO-66-F4 was synthesized under mild conditions using an enzyme-compatible amino acid modulator, serine, at a modest temperature in an aqueous solution. Enzyme@UiO-66-F4 biocomposites were then formed by an in situ encapsulation route in which UiO-66-F4 grows around the enzymes and, consequently, provides protection for the enzymes. A range of enzymes, namely, lysozyme, horseradish peroxidase, and amano lipase, were successfully encapsulated within UiO-66-F4. We further demonstrate that the resulting biocomposites are stable under conditions that could denature many enzymes. Horseradish peroxidase encapsulated within UiO-66-F4 maintained its biological activity even after being treated with the proteolytic enzyme pepsin and heated at 60 °C. This strategy expands the toolbox of potential metal-organic frameworks with different topologies or functionalities that can be used as enzyme encapsulation hosts. We also demonstrate that this versatile process of in situ encapsulation of enzymes under mild conditions (i.e., submerged in water and at a modest temperature) can be generalized to encapsulate enzymes of various sizes within UiO-66-F4 while protecting them from harsh conditions (i.e., high temperatures, contact with denaturants or organic solvents)

    Programmed Polarizability Engineering in a Cyclen-Based Cubic Zr(IV) Metal–Organic Framework to Boost Xe/Kr Separation

    No full text
    Efficient separation of xenon (Xe) and krypton (Kr) mixtures through vacuum swing adsorption (VSA) is considered the most attractive route to reduce energy consumption, but discriminating between these two gases is difficult due to their similar properties. In this work, we report a cubic zirconium-based MOF (Zr-MOF) platform, denoted as NU-1107, capable of achieving selective separation of Xe/Kr by post-synthetically engineering framework polarizability in a programmable manner. Specifically, the tetratopic linkers in NU-1107 feature tetradentate cyclen cores that are capable of chelating a variety of transition-metal ions, affording a sequence of metal-docked cationic isostructural Zr-MOFs. NU-1107-Ag(I), which features the strongest framework polarizability among this series, achieves the best performance for a 20:80 v/v Xe/Kr mixture at 298 K and 1.0 bar with an ideal adsorbed solution theory (IAST) predicted selectivity of 13.4, placing it among the highest performing MOF materials reported to date. Notably, the Xe/Kr separation performance for NU-1107-Ag(I) is significantly better than that of the isoreticular, porphyrin-based MOF-525-Ag(II), highlighting how the cyclen core can generate relatively stronger framework polarizability through the formation of low-valent Ag(I) species and polarizable counteranions. Density functional theory (DFT) calculations corroborate these experimental results and suggest strong interactions between Xe and exposed Ag(I) sites in NU-1107-Ag(I). Finally, we validated this framework polarizability regulation approach by demonstrating the effectiveness of NU-1107-Ag(I) toward C3H6/C3H8 separation, indicating that this generalizable strategy can facilitate the bespoke synthesis of polarized porous materials for targeted separations
    corecore