12 research outputs found

    Inflammasome Signaling Regulates the Microbial–Neuroimmune Axis and Visceral Pain in Mice

    No full text
    Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain–gut interactions, but their role in microbiota–neuro–immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut–neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent

    Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway

    No full text
    Environmental factors, including westernised diets and alterations to the gut microbiota, are considered risk factors for inflammatory bowel diseases (IBD). The mechanisms underpinning diet-microbiota-host interactions are poorly understood in IBD. We present evidence that feeding a lard-based high-fat (HF) diet can protect mice from developing DSS-induced acute and chronic colitis and colitis-associated cancer (CAC) by significantly reducing tumour burden/incidence, immune cell infiltration, cytokine profile, and cell proliferation. We show that HF protection was associated with increased gut microbial diversity and a significant reduction in Proteobacteria and an increase in Firmicutes and Clostridium cluster XIVa abundance. Microbial functionality was modulated in terms of signalling fatty acids and bile acids (BA). Faecal secondary BAs were significantly induced to include moieties that can activate the vitamin D receptor (VDR), a nuclear receptor richly represented in the intestine and colon. Indeed, colonic VDR downstream target genes were upregulated in HF-fed mice and in combinatorial lipid-BAs-treated intestinal HT29 epithelial cells. Collectively, our data indicate that HF diet protects against colitis and CAC risk through gut microbiota and BA metabolites modulating vitamin D targeting pathways. Our data highlights the complex relationship between dietary fat-induced alterations of microbiota-host interactions in IBD/CAC pathophysiology

    Pregnancy-specific glycoprotein expression in normal gastrointestinal tract and in tumors detected with novel monoclonal antibodies

    Get PDF
    Pregnancy-specific glycoproteins (PSGs) are immunoglobulin superfamily members related to the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family and are encoded by 10 genes in the human. They are secreted at high levels by placental syncytiotrophoblast into maternal blood during pregnancy, and are implicated in immunoregulation, thromboregulation, and angiogenesis. To determine whether PSGs are expressed in tumors, we characterized 16 novel monoclonal antibodies to human PSG1 and used 2 that do not cross-react with CEACAMs to study PSG expression in tumors and in the gastrointestinal (GI) tract using tissue arrays and immunohistochemistry. Staining was frequently observed in primary squamous cell carcinomas and colonic adenocarcinomas and was correlated with the degree of tumor differentiation, being largely absent from metastatic samples. Staining was also observed in normal oesophageal and colonic epithelium. PSG expression in the human and mouse GI tract was confirmed using quantitative RT-PCR. However, mRNA expression was several orders of magnitude lower in the GI tract compared to placenta. Our results identify a non-placental site of PSG expression in the gut and associated tumors, with implications for determining whether PSGs have a role in tumor progression, and utility as tumor biomarkers
    corecore