3 research outputs found

    Association of walkability and NO2 with metabolic syndrome: A cohort study in China

    No full text
    Background: Epidemiological studies have reported an association between traffic-related pollution with risk of metabolic syndrome (MetS). However, evidence from prospective studies on the association of walkability and nitrogen dioxide (NO2) with MetS is still scarce. We, therefore, aimed to evaluate the association of long-term exposure to NO2 and walkability with hazards of incident MetS. Methods: A total of 17,965 participants without MetS diagnosed within one year at baseline were included in our study from a population-based prospective cohort in Yinzhou District, Ningbo, Zhejiang Province, China. Participants were followed up by the regional Health Information System (HIS) until December 15, 2021. MetS was defined based on the criteria of Chinese Diabetes Society (CDS2004). We used walkscore tools, calculating with amenity categories and decay functions, and spatial–temporal land-use regression (LUR) models to estimate walkability and NO2 concentrations. We used Cox proportional hazards regression models to examine the association of walkability and NO2 with hazards of MetS incidence reporting with hazard ratios (HRs) and 95% confidence intervals (CIs). Results: Overall, we followed up 77,303 person-years and identified 4040 incident cases of MetS in the entire cohort. Higher walkability was inversely associated with incident MetS (HR = 0.94, 95 % CI: 0.91–0.99), whereas NO2 was positively associated with MetS incidence (HR = 1.07, 95 %CI: 1.00–1.15) per interquartile range increment in two-exposure models. Furthermore, we found a significant multiplicative interaction between walkability and NO2. Stronger associations were observed for NO2 and incident MetS among men, smokers, drinkers and participants who aged < 60 years and had higher levels of income. Conclusion: In summary, we found living in areas with lower walkability and higher concentrations of NO2 were associated with increased incidence of MetS. The beneficial effect of higher walkability may be attenuated by exposure to NO2

    GhCYS2 governs the tolerance against cadmium stress by regulating cell viability and photosynthesis in cotton

    No full text
    Cysteine, an early sulfur-containing compound in plants, is of significant importance in sulfur metabolism. CYS encodes cysteine synthetase that further catalyzes cysteine synthesis. In this investigation, CYS genes, identified from genome-wide analysis of Gossypium hirsutum bioinformatically, led to the discovery of GhCYS2 as the pivotal gene responsible for Cd2+ response. The silencing of GhCYS2 through virus-induced gene silencing (VIGS) rendered plants highly susceptible to Cd2+ stress. Silencing GhCYS2 in plants resulted in diminished levels of cysteine and glutathione while leading to the accumulation of MDA and ROS within cells, thereby impeding the regular process of photosynthesis. Consequently, the stomatal aperture of leaves decreased, epidermal cells underwent distortion and deformation, intercellular connections are dramatically disrupted, and fissures manifested between cells. Ultimately, these detrimental effected culminating in plant wilting and a substantial reduction in biomass. The association established between Cd2+ and cysteine in this investigation offered a valuable reference point for further inquiry into the functional and regulatory mechanisms of cysteine synthesis genes

    Additional file 1 of GhIMP10D, an inositol monophosphates family gene, enhances ascorbic acid and antioxidant enzyme activities to confer alkaline tolerance in Gossypium hirsutum L.

    No full text
    Additional file 1: Supplementary Table S1. Gene locus ID and their proposed names of all observed species and the gene characteristics in G. hirsutum. Supplementary Table S2. Duplicated gene pairs in 10 combinations (Ga-Ga, Ga-Gb, Ga-Gr, Gb-Gb, Gb-Gr, Gh-Gh, Gh-Ga, Gh-Gb, Gh-Gr and Gr-Gr). Supplementary Table S3. Non-synonymous (Ka) and synonymous (Ks) divergence values for Ga-Ga, Ga-Gb, Ga-Gr, Gb-Gb, Gb-Gr, Gh-Gh, Gh-Ga, Gh-Gb, Gh-Gr and Gr-Gr. Supplementary Table S4. Primer pairs used for this experiment
    corecore