21 research outputs found

    A Double-Layer Hydrogel Dressing with High Mechanical Strength and Water Resistance Used for Drug Delivery

    No full text
    Hydrogel dressings provide a moist wound healing environment, absorb the exudates of the wound, and have better biocompatibility than traditional dressings. However, it is still difficult to meet the needs of modern medicine due to the defects in drug burst release, weak mechanical strength, and poor water retention. To solve these problems, we developed a double-layer (DL) hydrogel based on β-cyclodextrin polymer (β-CDP), poly(vinyl alcohol) (PVA), and carboxymethyl cellulose sodium (CMC) via a layer-by-layer method. Inspired by natural coconut, this hydrogel consisted of a drug release layer (DRL) and a mechanical support layer (MSL). In our design, the introduction of β-CDP into the DRL slowed the drug release rate of the DL hydrogel. Furthermore, the mechanical strength of the hydrogel was improved by immersing the MSL in a calcium chloride/boric acid solution. Combining these two layers, the tensile strength and elongation at break of the DL hydrogel reached 1504 kPa and 400%, respectively. More interestingly, the release mechanism of DL hydrogel conformed to the diffusion–relaxation–erosion model, which was different from traditional hydrogel dressings. Therefore, the as-prepared DL structure represents a feasible solution for fabricating high-performance mechanical hydrogel dressings with sustained drug release properties, and the DL hydrogel has potential to be used for medical dressings applied in daily life

    Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia.

    Get PDF
    Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs) is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC) or 6 days (E6d HPC). Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO) was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF) regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC). Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1). An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection

    Additional file 1: Figure S1. of The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia

    No full text
    The PT-INR values after warfarin withdrawal. After warfarin withdrawal, INR values remained stable for the next 6 h and dropped to normal values after 24 h. Data are shown as mean ± SD

    Additional file 3: Figure S3. of The glucagon-like peptide-1 receptor agonist exendin-4 ameliorates warfarin-associated hemorrhagic transformation after cerebral ischemia

    No full text
    Representative immunofluorescence images showed co-localization of Iba1 (green) and TNF-α (red) in microglia. Immunostaining of Iba1(green), TNF-α(red), and DAPI (blue) was performed in the cortical and subcortical areas supplied by the middle cerebral artery. (A) Representative immunofluorescence images showed the percentage of Iba1+/TNF-α + cells to total Iba1+ cells was increased after warfarin treatment. EX-4 treatment reduced the Iba1+/TNF-α + cells percentage, whereas wortmannin blocked this effect of EX-4. Scale bar 50 μm. (B) Quantitative analysis of Iba1 and TNF-α double positive cells/Iba1-positive cells

    Enhanced THz Circular-Polarization Detection in Miniaturized Chips with Chiral Antennas

    No full text
    Recent advancements in terahertz (THz) wave technology have highlighted the criticality of circular-polarization detection, fostering the development of more compact, efficient on-chip THz circular-polarization detectors. In response to this technological imperative, we presented a chiral-antenna-integrated GaAs/AlGaAs quantum well (QW) THz detector. The chiral antenna selectively couples the incident light of a specific circular-polarization state into a surface-plasmon polariton wave that enhances the absorptance of the QWs by a factor of 12 relative to a standard 45° faceted device, and reflects a significant amount of the incident light of the orthogonal circular-polarization state. The circular-polarization selectivity is further enhanced by the QWs with a strong intrinsic anisotropy, resulting in a circular-polarization extinction ratio (CPER) as high as 26 at 6.52 THz. In addition, the operation band of the device can be adjusted by tuning the structural parameters of the chiral structure. Moreover, the device preserves a high performance for oblique incidence within a range of ±5°, and the device architecture is compatible with a focal plane array. This report communicates a promising approach for the development of miniaturized on-chip THz circular-polarization detectors

    E3d HPC reversed the upregulation of CD39 and CD73 and induced ENT-1 mRNA expression.

    No full text
    <p>A single episode of HPC and E6d HPC significantly increased the mRNA expression levels of CD39 (A), CD73 (B) and had no effect on ENT-1 (C) expression. E3d HPC had the opposite effect, having no effect on CD39 (A) and CD73 (B) expression, but significantly increasing ENT-1 (C) expression. Data are shown as mean ± SD; <i>n</i> = 6 mice in each group; data analyzed by one-way ANOVA; * <i>P</i><0.05 compared to the control.</p

    CD39 and CD73 were highly upregulated after HPC and were mainly distributed in neurons.

    No full text
    <p>Immunofluorescence assay was used to show the expression of CD39 (A, B, C) and CD73 (D, E, F) in neurons and astrocytes in different groups. Neuron and astrocyte cytoskeletal proteins, MAP-2 and GFAP, were labeled with green fluorescence, while CD39 or CD73 were labeled with red fluorescence. CD39 and CD73 were highly upregulated after HPC but not after E3d HPC (A, B, D, E). Quantitative analysis of receptor expression showed that both CD39 and CD73 were mainly localized in neurons (C, F). Data are shown as mean ± SD; <i>n</i> = 4 mice in each group.</p

    High-Discrimination Circular Polarization Detection Based on Dielectric-Metal-Hybrid Chiral Metamirror Integrated Quantum Well Infrared Photodetectors

    No full text
    Circular polarization detection enables a wide range of applications. With the miniaturization of optoelectronic systems, integrated circular polarization detectors with native sensitivity to the spin state of light have become highly sought after. The key issues with this type of device are its low circular polarization extinction ratios (CPERs) and reduced responsivities. Metallic two-dimensional chiral metamaterials have been integrated with detection materials for filterless circular polarization detection. However, the CPERs of such devices are typically below five, and the light absorption in the detection materials is hardly enhanced and is even sometimes reduced. Here, we propose to sandwich multiple quantum wells between a dielectric two-dimensional chiral metamaterial and a metal grating to obtain both a high CPER and a photoresponse enhancement. The dielectric-metal-hybrid chiral metamirror integrated quantum well infrared photodetector (QWIP) exhibits a CPER as high as 100 in the long wave infrared range, exceeding all reported CPERs for integrated circular polarization detectors. The absorption efficiency of this device reaches 54%, which is 17 times higher than that of a standard 45° edge facet coupled device. The circular polarization discrimination is attributed to the interference between the principle-polarization radiation and the cross-polarization radiation of the chiral structure during multiple reflections and the structure-material double polarization selection. The enhanced absorption efficiency is due to the excitation of a surface plasmon polariton wave. The dielectric-metal-hybrid chiral mirror structure is compatible with QWIP focal plane arrays
    corecore