38 research outputs found

    Predicting nosocomial lower respiratory tract infections by a risk index based system

    Get PDF
    Although belonging to one of the most common type of nosocomial infection, there was currently no simple prediction model for lower respiratory tract infections (LRTIs). This study aims to develop a risk index based system for predicting nosocomial LRTIs based on data from a large point-prevalence survey. Among the 49328 patients included, the prevalence of nosocomial LRTIs was 1.70% (95% confidence interval [CI], 1.64% to 1.76%). The areas under the receiver operating characteristic (ROC) curve for logistic regression and fisher discriminant analysis were 0.907 (95% CI, 0.897 to 0.917) and 0.902 (95% CI, 0.892 to 0.912), respectively. The constructed risk index based system also displayed excellent discrimination (area under the ROC curve: 0.905 [95% CI, 0.895 to 0.915]) to identify LRTI in internal validation. Six risk levels were generated according to the risk score distribution of study population, ranging from 0 to 5, the corresponding prevalence of nosocomial LRTIs were 0.00%, 0.39%, 3.86%, 12.38%, 28.79% and 44.83%, respectively. The sensitivity and specificity of prediction were 0.87 and 0.79, respectively, when the best cut-off point of risk score was set to 14. Our study suggested that this newly constructed risk index based system might be applied to boost more rational infection control programs in clinical settings

    Characterization and phylogenetic analysis of the mitochondrial genome sequence of Heniochus acuminatus

    No full text
    In this study, the complete mitochondrial genome of Heniochus acuminatus was first sequenced and annotated. The entire mitogenome is 16,584 bp in length, which consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a non-coding control region. The phylogenetic analysis by maximum-likelihood (ML) method revealed that H. acuminatus belongs to the Chaetodontidae family and is closely related to other Heniochus fish. The complete mitochondrial genome of H. acuminatus is helpful in population genetics and molecular systematics

    Complete mitochondrial DNA sequence of Golden trevally Gnathanodon speciosus (Forsskål, 1775) and the phylogenetic analysis of Carangidae

    No full text
    In this study, the complete mitochondrial genome of Gnathanodon speciosus was determined. The entire mitochondrial DNA sequence is 16,555 bp in length and consists of 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. Phylogenetic analysis was performed using 13 PCGs showing that G. speciosus belongs to the Carangidae family, and is most closely related to the species in genera Caranx and Megalaspis

    Characterization of preclinical Alzheimer’s disease model: spontaneous type 2 diabetic cynomolgus monkeys with systemic pro-inflammation, positive biomarkers and developing AD-like pathology

    No full text
    Abstract Background The key to the prevention and treatment of Alzheimer’s disease (AD) is to be able to predict and diagnose AD at the preclinical or early stage, but the lack of a preclinical model of AD is the critical factor that causes this problem to remain unresolved. Methods We assessed 18 monkeys in vivo evaluation of pro-inflammatory cytokines and AD pathological biomarkers (n = 9 / type 2 diabetic mellitus (T2DM) group, age 20, fasting plasma glucose (FPG) ≥ 100 mg/dL, and n = 9 / negative control (NC) group, age 17, FPG < 100 mg/dL). Levels of pro-inflammatory cytokines and AD pathological biomarkers was measured by ELISA and Simoa Technology, respectively. 9 monkeys evaluated ex vivo for AD-like pathology (n = 6 / T2DM group, age 22.17, FPG ≥ 126 mg/dL, and n = 3 / NC group, age 14.67, FPG < 100 mg/dL). To evaluate the pathological features of AD in the brains of T2DM monkeys, we assessed the levels of Aβ, phospho-tau, and neuroinflammation using immunohistochemistry, which further confirmed the deposition of Aβ plaques by Bielschowsky’s silver, Congo red, and Thioflavin S staining. Synaptic damage and neurodegeneration were assessed by immunofluorescence. Results We found not only increased levels of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) in peripheral blood (PB) and brain of T2DM monkeys but also changes in PB of AD pathological biomarkers such as decreased β-amyloid (Aβ) 42 and Aβ40 levels. Most notably, we observed AD-like pathological features in the brain of T2DM monkeys, including Aβ plaque deposition, p-tau from neuropil thread to pre-neurofibrillary tangles (NFTs), and even the appearance of extracellular NFT. Microglia were activated from a resting state to an amoeboid. Astrocytes showed marked hypertrophy and an increased number of cell bodies and protrusions. Finally, we observed impairment of the postsynaptic membrane but no neurodegeneration or neuronal death. Conclusions Overall, T2DM monkeys showed elevated levels of peripheral and intracerebral inflammation, positive AD biomarkers in body fluids, and developing AD-like pathology in the brain, including Aβ and tau pathology, glial cell activation, and partial synaptic damage, but no neuronal degeneration or death as compared to the healthy normal group. Hereby, we consider the T2DM monkeys with elevation of the peripheral pro-inflammatory factors and positive AD biomarkers can be potentially regarded as a preclinical AD model

    Integrated Analysis of Single-Molecule Real-Time Sequencing and Next-Generation Sequencing Eveals Insights into Drought Tolerance Mechanism of Lolium multiflorum

    No full text
    Lolium multiflorum is widely planted in temperate and subtropical regions globally, and it has high economic value owing to its use as forage grass for a wide variety of livestock and poultry. However, drought seriously restricts its yield and quality. At present, owing to the lack of available genomic resources, many types of basic research cannot be conducted, which severely limits the in-depth functional analysis of genes in L. multiflorum. Therefore, we used single-molecule real-time (SMRT) and next-generation sequencing (NGS) to sequence the complex transcriptome of L. multiflorum under drought. We identified 41,141 DEGs in leaves, 35,559 DEGs in roots, respectively. Moreover, we identified 1243 alternative splicing events under drought. LmPIP5K9 produced two different transcripts with opposite expression patterns, possibly through the phospholipid signaling pathway or the negatively regulated sugar-mediated root growth response to drought stress, respectively. Additionally, 13,079 transcription factors in 90 families were obtained. An in-depth analysis of R2R3-MYB gene family members was performed to preliminarily demonstrate their functions by utilizing subcellular localization and overexpression in yeast. Our data make a significant contribution to the genetics of L. multiflorum, offering a current understanding of plant adaptation to drought stress

    Isolation, identification, and biological control in vitro of tail rot pathogen strain from Hippocampus kuda.

    No full text
    Tail rot disease is associated with major economic losses in the seahorse aquaculture in China. This study aimed to isolate and identify the pathogen causing tail rot disease in seahorses. Three culturable intestinal bacteria strains were isolated from Hippocampus kuda specimens with tail rot disease. Strain HL11, HL12, and HL13 were identified as Pseudoalteromonas spongiae, Bacillus subtilis and Photobacterium ganghwense based on its morphological characteristics, physiological and biochemical properties, through 16S rRNA and gyrB sequencing, respectively. Challenge experiments using these strains on healthy H. kuda and bacterial re-isolation from challenged diseased seahorses showed that the bacteria strain named HL11 induced identical pathological symptoms, indicating that it is the causative pathogen of the disease. Antibiotic-resistance tests against of 32 antibiotics revealed that HL11 was highly sensitive to 13 kinds, while exhibited intermediate susceptibility to 6, and resistance to 13 kinds. Antibacterial tests of the bioactive agents showed that HL11 was susceptible to five kinds, including tea polyphenols, lactic acid, gallic acid, allicin, and polylysine; however, it was not susceptible to the other 13 kinds of bioactive agents. The results demonstrate the potential of using bioactive agents to replace antibiotics to generate an environmentally friendly mode of culturing seahorses

    Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells.

    No full text
    Microsporidia are eukaryotic, unicellular parasites that have been studied for more than 150 years. These organisms are extraordinary in their ability to invade a wide range of hosts including vertebrates and invertebrates, such as human and commercially important animals. A lack of appropriate labeling methods has limited the research of the cell cycle and protein locations in intracellular stages. In this report, an easy fluorescent labeling method has been developed to mark the proliferative and sporogonic phases of microsporidia Nosema bombycis in host cells. Based on the presence of chitin, Calcofluor White M2R was used to label the sporogonic phase, while β-tubulin antibody coupled with fluorescence secondary antibody were used to label the proliferative phase by immunofluorescence. This method is simple, efficient and can be used on both infected cells and tissue slices, providing a great potential application in microsporidia research
    corecore