221 research outputs found

    Learning Semantic-Agnostic and Spatial-Aware Representation for Generalizable Visual-Audio Navigation

    Full text link
    Visual-audio navigation (VAN) is attracting more and more attention from the robotic community due to its broad applications, \emph{e.g.}, household robots and rescue robots. In this task, an embodied agent must search for and navigate to the sound source with egocentric visual and audio observations. However, the existing methods are limited in two aspects: 1) poor generalization to unheard sound categories; 2) sample inefficient in training. Focusing on these two problems, we propose a brain-inspired plug-and-play method to learn a semantic-agnostic and spatial-aware representation for generalizable visual-audio navigation. We meticulously design two auxiliary tasks for respectively accelerating learning representations with the above-desired characteristics. With these two auxiliary tasks, the agent learns a spatially-correlated representation of visual and audio inputs that can be applied to work on environments with novel sounds and maps. Experiment results on realistic 3D scenes (Replica and Matterport3D) demonstrate that our method achieves better generalization performance when zero-shot transferred to scenes with unseen maps and unheard sound categories

    Pose-Assisted Multi-Camera Collaboration for Active Object Tracking

    Full text link
    Active Object Tracking (AOT) is crucial to many visionbased applications, e.g., mobile robot, intelligent surveillance. However, there are a number of challenges when deploying active tracking in complex scenarios, e.g., target is frequently occluded by obstacles. In this paper, we extend the single-camera AOT to a multi-camera setting, where cameras tracking a target in a collaborative fashion. To achieve effective collaboration among cameras, we propose a novel Pose-Assisted Multi-Camera Collaboration System, which enables a camera to cooperate with the others by sharing camera poses for active object tracking. In the system, each camera is equipped with two controllers and a switcher: The vision-based controller tracks targets based on observed images. The pose-based controller moves the camera in accordance to the poses of the other cameras. At each step, the switcher decides which action to take from the two controllers according to the visibility of the target. The experimental results demonstrate that our system outperforms all the baselines and is capable of generalizing to unseen environments. The code and demo videos are available on our website https://sites.google.com/view/pose-assistedcollaboration
    • …
    corecore