33 research outputs found

    Fintech's Influence on Green Credit Provision: Empirical Evidence from China’s Listed Banking Sector

    Get PDF
    We explore the impact of financial technology (fintech) advancements on green credit provision, investigating publicly traded banks in China from 2007 to 2022. We particularly focus on credit modelling innovation, examining the non-linear dynamics between fintech evolution and green credit distribution. Results reveal a positive U-shaped correlation. Initial stages of fintech are associated with increased green credit risk, negatively affecting the volume of green credit. However, more established fintech infrastructures significantly enhance green credit volumes by improving resource allocation and credit risk assessment. Utilizing a multiple linear regression approach, we highlight the transformative nature of fintech in advancing sustainable banking practices, particularly through innovations in credit modeling that enhance green credit risk management and resource allocation efficiency

    The Galactic extinction and reddening from the South Galactic Cap U-band Sky Survey: u band galaxy number counts and u−ru-r color distribution

    Full text link
    We study the integral Galactic extinction and reddening based on the galaxy catalog of the South Galactic Cap U-band Sky Survey (SCUSS), where uu band galaxy number counts and u−ru-r color distribution are used to derive the Galactic extinction and reddening respectively. We compare these independent statistical measurements with the reddening map of \citet{Schlegel1998}(SFD) and find that both the extinction and reddening from the number counts and color distribution are in good agreement with the SFD results at low extinction regions (E(B−V)SFD<0.12E(B-V)^{SFD}<0.12 mag). However, for high extinction regions (E(B−V)SFD>0.12E(B-V)^{SFD}>0.12 mag), the SFD map overestimates the Galactic reddening systematically, which can be approximated by a linear relation ΔE(B−V)=0.43[E(B−V)SFD−0.12\Delta E(B-V)= 0.43[E(B-V)^{SFD}-0.12]. By combing the results of galaxy number counts and color distribution together, we find that the shape of the Galactic extinction curve is in good agreement with the standard RV=3.1R_V=3.1 extinction law of \cite{ODonnell1994}

    Rapid detection of porcine circovirus type 2 using a TaqMan-based real-time PCR

    Get PDF
    Porcine circovirus type 2 (PCV2) and the associated disease postweaning multisystemic wasting syndrome (PMWS) have caused heavy losses in global agriculture in recent decades. Rapid detection of PCV2 is very important for the effective prophylaxis and treatment of PMWS. To establish a sensitive, specific assay for the detection and quantitation of PCV2, we designed and synthesized specific primers and a probe in the open reading frame 2. The assay had a wide dynamic range with excellent linearity and reliable reproducibility, and detected between 102 and 1010 copies of the genomic DNA per reaction. The coefficient of variation for Ct values varied from 0.59% to 1.05% in the same assay and from 1.9% to 4.2% in 10 different assays. The assay did not cross-react with porcine circovirus type 1, porcine reproductive and respiratory, porcine epidemic diarrhea, transmissible gastroenteritis of pigs and rotavirus. The limits of detection and quantitation were 10 and 100 copies, respectively. Using the established real-time PCR system, 39 of the 40 samples we tested were detected as positive

    Hard superconducting gap in PbTe nanowires

    Full text link
    Semiconductor nanowires coupled to a superconductor provide a powerful testbed for quantum device physics such as Majorana zero modes and gate-tunable hybrid qubits. The performance of these quantum devices heavily relies on the quality of the induced superconducting gap. A hard gap, evident as vanishing subgap conductance in tunneling spectroscopy, is both necessary and desired. Previously, a hard gap has been achieved and extensively studied in III-V semiconductor nanowires (InAs and InSb). In this study, we present the observation of a hard superconducting gap in PbTe nanowires coupled to a superconductor Pb. The gap size (Δ\Delta) is ∼\sim 1 meV (maximally 1.3 meV in one device). Additionally, subgap Andreev bound states can also be created and controlled through gate tuning. Tuning a device into the open regime can reveal Andreev enhancement of the subgap conductance, suggesting a remarkable transparent superconductor-semiconductor interface, with a transparency of ∼\sim 0.96. These results pave the way for diverse superconducting quantum devices based on PbTe nanowires

    What has affected the governance effect of the whole population coverage of medical insurance in China in the past decade? Lessons for other countries

    Get PDF
    ObjectiveThis study aimed to explore the current state of governance of full population coverage of health insurance in China and its influencing factors to provide empirical references for countries with similar social backgrounds as China.MethodsA cross-sectional quantitative study was conducted nationwide between 22 January 2020 and 26 January 2020, with descriptive statistics, analysis of variance, and logistic regression models via SPSS 25.0 to analyze the effectiveness and influencing factors of the governance of full population coverage of health insurance in China.ResultsThe effectiveness of the governance relating to the total population coverage of health insurance was rated as good by 59% of the survey respondents. According to the statistical results, the governance of the public's ability to participate in insurance (OR = 1.516), the degree of information construction in the medical insurance sector (OR = 2.345), the government's governance capacity (OR = 4.284), and completeness of the government's governance tools (OR = 1.370) were all positively correlated (p &lt; 0.05) on the governance effect of the whole population coverage of health insurance.ConclusionsThe governance of Chinese health insurance relating to the total population coverage is effective. To effectively improve the effectiveness of the governance relating to the total population coverage of health insurance, health insurance information construction, governance capacity, and governance tools should be the focus of governance to further improve the accurate expansion of and increase the coverage of health insurance

    Ballistic PbTe Nanowire Devices

    Full text link
    Disorder is the primary obstacle in current Majorana nanowire experiments. Reducing disorder or achieving ballistic transport is thus of paramount importance. In clean and ballistic nanowire devices, quantized conductance is expected with plateau quality serving as a benchmark for disorder assessment. Here, we introduce ballistic PbTe nanowire devices grown using the selective-area-growth (SAG) technique. Quantized conductance plateaus in units of 2e2/h2e^2/h are observed at zero magnetic field. This observation represents an advancement in diminishing disorder within SAG nanowires, as none of the previously studied SAG nanowires (InSb or InAs) exhibit zero-field ballistic transport. Notably, the plateau values indicate that the ubiquitous valley degeneracy in PbTe is lifted in nanowire devices. This degeneracy lifting addresses an additional concern in the pursuit of Majorana realization. Moreover, these ballistic PbTe nanowires may enable the search for clean signatures of the spin-orbit helical gap in future devices

    Investigation of Phonon Scattering on the Tunable Mechanisms of Terahertz Graphene Metamaterials

    No full text
    The influences of different kinds of phonon scatterings (i.e., acoustic (AC) phonon, impurity, and longitudinal optical (LO) phonon scatterings) on the tunable propagation properties of graphene metamaterials structures have been investigated, also including the effects of graphene pattern structures, Fermi levels, and operation frequencies. The results manifested that, at room temperature, AC phonon scattering dominated, while with the increase in temperature, the LO phonon scattering increased significantly and played a dominate role if temperature goes beyond 600 K. Due to the phonon scatterings, the resonant properties of the graphene metamaterial structure indicated an optimum value (about 0.5&ndash;0.8 eV) with the increase in Fermi level, which were different from the existing results. The results are very helpful to understand the tunable mechanisms of graphene functional devices, sensors, modulators, and antennas

    Nomograms predict long-term survival for patients with periampullary adenocarcinoma after pancreatoduodenectomy

    No full text
    Abstract Background The prognosis of patients with periampullary adenocarcinoma after pancreatoduodenectomy is diverse and not yet clearly illustrated. The aim of this study was to develop a nomogram to predict individual risk of overall survival (OS) and progression-free survival (PFS) in patients with periampullary adenocarcinoma after pancreatoduodenectomy. Methods A total of 205 patients with periampullary adenocarcinoma after pancreatoduodenectomy were retrospectively included. OS and PFS were evaluated by the Kaplan-Meier method. Two nomograms for predicting OS and PFS were established, and the predictive accuracy was measured by the concordance index (Cindex) and calibration plots. Results Lymph node ratio (LNR), carbohydrate antigen 19–9 (CA19–9) and anatomical location were incorporated into the nomogram for OS prediction and LNR, CA19–9; anatomical location and tumor differentiation were incorporated into the nomogram for PFS prediction. All calibration plots for the probability of OS and PFS fit well. The Cindexes of the nomograms for OS and PFS prediction were 0.678 and 0.68, respectively. The OS and PFS survival times were stratified significantly using the nomogram-predicted survival probabilities. Conclusions The present nomograms for OS and PFS prediction can provide valuable information for tailored decision-making for patients with periampullary adenocarcinoma after pancreatoduodenectomy
    corecore