27 research outputs found

    Genetic Variants of Pregnane X Receptor (PXR) and CYP2B6 Affect the Induction of Bupropion Hydroxylation by Sodium Ferulate

    Get PDF
    This study investigated the effects of pregnane X receptor (PXR/NR1I2) and CYP2B6 genetic variants on sodium ferulate (SF)-mediated induction of bupropion hydroxylation. The pharmacokinetics of bupropion and hydroxybupropion were evaluated after an oral dose of bupropion (150 mg) administered with and without SF pretreatment for 14 days in 33 healthy subjects. The area under the time-concentration curve (AUC) ratio of AUC_hyd (AUC(0-∞) of hydroxybupropion)/AUC_bup (AUC(0-∞) of bupropion) represents the CYP2B6 hydroxylation activity, which was significantly lower in CYP2B6*6 carriers (NR1I2 TGT noncarriers or carriers) than in noncarriers in both the basal and SF-induced states (p-value<0.05). AUC ratio and AUC_hyd of NR1I2 -24113AA variant were markedly lower than GA and GG genotypes (7.5±2.1 versus 14.5±3.3 and 20.6±1.1, and 8873±1431 versus 14,504±2218 and 17,586±1046) in the induced states. However, -24020(-)/(-) variant didn't show significant difference in the induction of CYP2B6 hydroxylation activity by SF compared with other -24020[GAGAAG]/(-) genotypes. NR1I2 TGT haplotype (-25385T+g.7635G+g.8055T) carriers exhibited a significantly decreased AUC ratio, compared with TGT noncarriers, in the basal states (7.6±1.0 versus 9.7±1.0), while this result wasn't observed in CYP2B6*6 noncarriers. Moreover, individuals with complete mutation-type [CYP2B6*6/*6+NR1I2 TGT+ -24113AA+ -24020 (-)/(-)] showed even lower percent difference of AUC ratio (8.7±1.2 versus 39.5±8.2) than those with complete wild-type. In conclusion, it is suggested that NR1I2 variants decrease the bupropion hydroxylation induced by SF treatment, particularly in CYP2B6*6 carriers

    Growth and Physiological Responses of Norway Spruce (Picea abies (L.) H. Karst) Supplemented with Monochromatic Red, Blue and Far-Red Light

    Get PDF
    Monochromatic red light (R) supplementation is more efficient than blue light (B) in promoting Norway spruce (Picea abies (L.) H. Karst) growth. Transcriptome analysis has revealed that R and B may regulate stem growth by regulating phytohormones and secondary metabolites; however, the effects of light qualities on physiological responses and related gene expression in Norway spruce require further study. In the present study, three-year-old Norway spruce seedlings received sunlight during the daytime were exposed to monochromatic B (460 mm), monochromatic R (660 nm), monochromatic far-red light (FR, 730 nm), and a combination of three monochromatic lights (control, R:FR:B = 7:1:1) using light-emitting diode (LED) lamps for 12 h after sunset for 90 day. Growth traits, physiological responses, and related gene expression were determined. The results showed that light quality significantly affected Norway spruce growth. The stem height, root collar diameter, and current-year shoot length of seedlings treated with R were 2%, 10% and 12% higher, respectively, than those of the control, whereas seedlings treated with B and FR showed significantly lower values of these parameters compared with that of the control. The net photosynthetic rate (Pn) of seedlings under R treatment was 10% higher than that of the control, whereas the Pn values of seedlings treated with FR and B were 22% and 33%, respectively, lower than that of the control. The ratio of phosphoenolpyruvate carboxylase to ribulose-1,5-bisphosphate carboxylase/oxygenase (PEPC/Rubisco) of seedlings after the R treatment (0.581) was the highest and 3.98 times higher than that of the seedlings treated with B. Light quality significantly affected the gibberellic acid (GAs) levels, which was 13% higher in seedlings treated with R (6.4 g/100 ng) than that of the control, whereas, the GAs level of seedlings treated with B and FR was 17% and 19% lower, respectively, than that of the control. In addition, seedlings treated with R achieved the lowest ratio of leaf chlorophyll content to fresh weight (8.7). Compared to the R and control treatments, seedlings received FR treatment had consistently lower values of the quantum yield of electron transport beyond Q(A)(-) (primary quinone, phi Eo) and efficiency, with which a trapped exciton moves an electron into the electron transport chain beyond Q(A)(-) (psi o), while higher values of the relatively variable fluorescence at the J step and normalized relatively variable fluorescence at the K step (W-k). The values of phi Eo, psi O, V-J and W-k in seedlings treated with B were similar to those in the control group. The expression of genes associated with light signal transduction, such as PHYTOCHROME C (PHYC), ELONGATED HYPOCOTYL5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC 1-2 (COP1-2), and PHYTOCHROME INTERACTING FACTOR 3 (PIF3), was significantly higher in seedlings under B treatment than those under other light treatments. Nevertheless, significant differences were not observed in the expression of COP1-2, HY5, and PIF3 between the R treatment and the control. The expression value of COP1-2 was significantly lower in R than FR light treatments. In conclusion, compared with the control, R promotes, whereas B and FR inhibit Norway spruce growth, which was accompanied by physiological changes and genes expression regulation that may be relate to a changing phytochrome photostationary state (PSS) with the supplemental R in seedlings

    Transcriptome Analysis Reveals that Red and Blue Light Regulate Growth and Phytohormone Metabolism in Norway Spruce [Picea abies (L.) Karst].

    No full text
    The mechanisms by which different light spectra regulate plant shoot elongation vary, and phytohormones respond differently to such spectrum-associated regulatory effects. Light supplementation can effectively control seedling growth in Norway spruce. However, knowledge of the effective spectrum for promoting growth and phytohormone metabolism in this species is lacking. In this study, 3-year-old Norway spruce clones were illuminated for 12 h after sunset under blue or red light-emitting diode (LED) light for 90 d, and stem increments and other growth traits were determined. Endogenous hormone levels and transcriptome differences in the current needles were assessed to identify genes related to the red and blue light regulatory responses. The results showed that the stem increment and gibberellin (GA) levels of the seedlings illuminated by red light were 8.6% and 29.0% higher, respectively, than those of the seedlings illuminated by blue light. The indoleacetic acid (IAA) level of the seedlings illuminated by red light was 54.6% lower than that of the seedlings illuminated by blue light, and there were no significant differences in abscisic acid (ABA) or zeatin riboside [ZR] between the two groups of seedlings. The transcriptome results revealed 58,736,166 and 60,555,192 clean reads for the blue-light- and red-light-illuminated samples, respectively. Illumina sequencing revealed 21,923 unigenes, and 2744 (approximately 93.8%) out of 2926 differentially expressed genes (DEGs) were found to be upregulated under blue light. The main KEGG classifications of the DEGs were metabolic pathway (29%), biosynthesis of secondary metabolites (20.49%) and hormone signal transduction (8.39%). With regard to hormone signal transduction, AUXIN-RESISTANT1 (AUX1), AUX/IAA genes, auxin-inducible genes, and early auxin-responsive genes [(auxin response factor (ARF) and small auxin-up RNA (SAUR)] were all upregulated under blue light compared with red light, which might have yielded the higher IAA level. DELLA and phytochrome-interacting factor 3 (PIF3), involved in negative GA signaling, were also upregulated under blue light, which may be related to the lower GA level. Light quality also affects endogenous hormones by influencing secondary metabolism. Blue light promoted phenylpropanoid biosynthesis, phenylalanine metabolism, flavonoid biosynthesis and flavone and flavonol biosynthesis, accompanied by upregulation of most of the genes in their pathways. In conclusion, red light may promote stem growth by regulating biosynthesis of GAs, and blue light may promote flavonoid, lignin, phenylpropanoid and some hormones (such as jasmonic acid) which were related to plant defense in Norway spruce, which might reduce the primary metabolites available for plant growth

    DEG pathways (Q-values of less than or equal to 0.05).

    No full text
    <p>DEG pathways (Q-values of less than or equal to 0.05).</p

    Mean coverages of all genes in the samples treated with red light (A) and blue light (B) and the upregulated and downregulated DEGs in the sample treated with blue light compared with that treated with red light (C).

    No full text
    <p>Mean coverages of all genes in the samples treated with red light (A) and blue light (B) and the upregulated and downregulated DEGs in the sample treated with blue light compared with that treated with red light (C).</p

    Multiple comparisons of growth traits and phytohormone average levels for red light and blue light treatments.

    No full text
    <p>Multiple comparisons of growth traits and phytohormone average levels for red light and blue light treatments.</p
    corecore