293 research outputs found

    Research on Audience Needs for Slow-Paced Amusement Shows from the Perspective of Uses and Gratification - A Case Study of Back to Field

    Get PDF
    Up against the impetuous and depressing fast-paced times, slow-paced amusement shows have come into being, which were watched by audiences with healing audio-visual presentations, turning the spiritual support for the audience to adjust their emotions and pursue poetic life. As a typical representative of slow-paced amusement shows, Back to Field has been a great success. However, the output of more and more similar programs makes it prominent in homogeneous modeling, leading the audience to lack emotional identity. Therefore, it is necessary to study audience needs. Based on the theory of uses and gratification, this paper takes Back to Field as an example and attempts to find out the trend of younger audiences as well as the reasons for diversified audience contact through the in-depth interview. In the era of audience orientation, it is conducive to grasping their needs, innovating constantly under their guidance, and actively leading their psychology, so as to create new glory in the slow-paced amusement industry and promote cultural self-confidence and self-improvement

    Geometric Optimization of Turbocharger Compressor and Its Influence on Engine Performance

    Full text link
    This paper consists of two parts: aerodynamic and mechanical multi-objective optimization for centrifugal compressor impeller through combining the three dimensional fluid dynamic simulation module CFX 16.1, the static structure in the ANSYS Workbench and the optimization software optiSLang; and a comparison and analysis of the effects of the optimized compressor on the engine performance by the one dimensional simulation tool GT-Power. In the process of optimization, the compressor design point is regarded as the optimizing point, while impeller blades and hub line were parameterized through the Bezier curve. Pressure ratio, isentropic efficiency, quality and maximum deformation and maximum internal stress of the impeller were defined as the output conditions. MOP module was then adopted in optiSLang for the parameters sensitivity analysis and mapping relationship modeling between the impeller parameters and the objective functions. The genetic algorithm is applied to find out and validate the optimal design. Through 1D simulation tool GT-Power, the influence of the optimized compressor on rotational speed of the turbocharger, backpressure and pumping loss under different engine operating conditions is analyzed and compared

    Monitoring of atopic dermatitis using leaky coaxial cable

    Get PDF
    In our daily life, inadvertent scratching may increase the severity of skin diseases (such as atopic dermatitis, etc.). However, people rarely pay attention to this matter, so the known measurement behavior of the movement is also very little. Nevertheless, the behavior and frequency of scratching represent the degree of itching, and the analysis of scratching frequency is helpful to the doctor's clinical dosage. In this paper, a novel system is proposed to monitor the scratching motion of a sleeping human body at night. The core device of the system are just a Leaky coaxial cable (LCX) and a router. Commonly, LCX is used in the blind field or semi blind field in wireless communication. The new idea is that the leaky cable is placed on the bed, then the state information of physical layer of wireless communication channels is acquired to identify the scratching motion and other small body movements in the human sleep process. The results show that it can be used to detect the movement and its duration. Channel state information (CSI) packet is collected by card installed in the computer based on the 802.11n protocol. The characterization of the scratch motion in the collected channel state information is unique, so it can be distinguished from the wireless channel amplitude variation trend

    Knowledgeable Preference Alignment for LLMs in Domain-specific Question Answering

    Full text link
    Recently, the development of large language models (LLMs) has attracted wide attention in academia and industry. Deploying LLMs to real scenarios is one of the key directions in the current Internet industry. In this paper, we present a novel pipeline to apply LLMs for domain-specific question answering (QA) that incorporates domain knowledge graphs (KGs), addressing an important direction of LLM application. As a real-world application, the content generated by LLMs should be user-friendly to serve the customers. Additionally, the model needs to utilize domain knowledge properly to generate reliable answers. These two issues are the two major difficulties in the LLM application as vanilla fine-tuning can not adequately address them. We think both requirements can be unified as the model preference problem that needs to align with humans to achieve practical application. Thus, we introduce Knowledgeable Preference AlignmenT (KnowPAT), which constructs two kinds of preference set called style preference set and knowledge preference set respectively to tackle the two issues. Besides, we design a new alignment objective to align the LLM preference with human preference, aiming to train a better LLM for real-scenario domain-specific QA to generate reliable and user-friendly answers. Adequate experiments and comprehensive with 15 baseline methods demonstrate that our KnowPAT is an outperforming pipeline for real-scenario domain-specific QA with LLMs. Our code is open-source at https://github.com/zjukg/KnowPAT.Comment: Work in progress. Code is available at https://github.com/zjukg/KnowPA

    Biometric behavior authentication exploiting propagation characteristics of wireless channel

    Get PDF
    Massive expansion of wireless body area networks (WBANs) in the field of health monitoring applications has given rise to the generation of huge amount of biomedical data. Ensuring privacy and security of this very personal data serves as a major hurdle in the development of these systems. An effective and energy friendly authentication algorithm is, therefore, a necessary requirement for current WBANs. Conventional authentication algorithms are often implemented on higher levels of the Open System Interconnection model and require advanced software or major hardware upgradation. This paper investigates the implementation of a physical layer security algorithm as an alternative. The algorithm is based on the behavior fingerprint developed using the wireless channel characteristics. The usability of the algorithm is established through experimental results, which show that this authentication method is not only effective, but also very suitable for the energy-, resource-, and interface-limited WBAN medical applications

    Key technologies of TH-2 satellite system

    Get PDF
    The TH-2 satellite system is the first microwave surveying satellite system based on interferometric synthetic aperture radar (InSAR) technology and the first short-range formation satellite system in China. It is composed of two equal satellites, and the satellites formation in different orbits and the bistatic radar transceiver mode are adopted. By using satellite formations to form the baseline needed for interference, it can measure the global digital surface models by scale of 1∶50 000 in a short time and acquire radar orthophotos at the same time. This paper gives a detailed introduction of the InSAR measurement principle and the technical system of TH-2 is also expounded carefully. To ensure the performance of system and the accuracy of product, several key techniques such as satellite formation, cooperative mode of two satellites, high-precision internal calibration, baseline determination, high-precision baseline measurement, high-precision baseline calibration, imaging of high phase fidelity and absolute ambiguity number calculation using dual-frequency need to be solved. These key technologies are analyzed in this paper, and the solutions are proposed. During the development of the TH-2 satellite system, simulation data and semi-physical simulation test were used to verify the feasibility of the main key technology solutions. After the satellites were launched, the on orbit test showed that the system was operating in good condition and the main performance indicators were better than the designed indicators, which further verified the feasibility of the key technology solutions and the correctness of these methods

    Biodiversity of network modules drives ecosystem functioning in biochar-amended paddy soil

    Get PDF
    IntroductionSoil microbes are central in governing soil multifunctionality and driving ecological processes. Despite biochar application has been reported to enhance soil biodiversity, its impacts on soil multifunctionality and the relationships between soil taxonomic biodiversity and ecosystem functioning remain controversial in paddy soil.MethodsHerein, we characterized the biodiversity information on soil communities, including bacteria, fungi, protists, and nematodes, and tested their effects on twelve ecosystem metrics (including functions related to enzyme activities, nutrient provisioning, and element cycling) in biochar-amended paddy soil.ResultsThe biochar amendment augmented soil multifunctionality by 20.1 and 35.7% in the early stage, while the effects were diminished in the late stage. Moreover, the soil microbial diversity and core modules were significantly correlated with soil multifunctionality.DiscussionOur analysis revealed that not just soil microbial diversity, but specifically the biodiversity within the identified microbial modules, had a more pronounced impact on ecosystem functions. These modules, comprising diverse microbial taxa, especially protists, played key roles in driving ecosystem functioning in biochar-amended paddy soils. This highlights the importance of understanding the structure and interactions within microbial communities to fully comprehend the impact of biochar on soil ecosystem functioning in the agricultural ecosystem
    • …
    corecore