59 research outputs found

    Study on a Frequency Fluctuation Attenuation Method for the Parallel Multi-VSG System

    Get PDF
    Virtual synchronous generator (VSG) is one of the inverter control methods which can provide extra virtual moment of inertia and achieve frequency support by mimicking the output characteristics of a rotating synchronous generator (RSG), which makes VSG particularly suitable for multi-access point applications, or called the multi-VSG system. However, frequency fluctuations may often occur in the case of power variation. In terms of this issue, this study presents the small-signal state-space model of VSG and analyzes the cause of frequency fluctuation, first. And then, a novel VSG control method is proposed for frequency fluctuation attenuation. The proposed method is especially fit for the parallel multi-VSG system because it does not take grid angular frequency into computation so that it can get rid of the ill effect introduced through PLL. The damping power item is reconstrued with a new means to judge whether the system is in a steady state or not. At the same time, the parametric design method of the proposed method is also figured out. Finally, the simulation experiments are performed, and the results verify that the proposed method performs better than the conventional one in terms of dynamic response and power-sharing among the multi-VSG system

    Comparative Analyses of H3K4 and H3K27 Trimethylations Between the Mouse Cerebrum and Testis

    Get PDF
    AbstractThe global features of H3K4 and H3K27 trimethylations (H3K4me3 and H3K27me3) have been well studied in recent years, but most of these studies were performed in mammalian cell lines. In this work, we generated the genome-wide maps of H3K4me3 and H3K27me3 of mouse cerebrum and testis using ChIP-seq and their high-coverage transcriptomes using ribominus RNA-seq with SOLiD technology. We examined the global patterns of H3K4me3 and H3K27me3 in both tissues and found that modifications are closely-associated with tissue-specific expression, function and development. Moreover, we revealed that H3K4me3 and H3K27me3 rarely occur in silent genes, which contradicts the findings in previous studies. Finally, we observed that bivalent domains, with both H3K4me3 and H3K27me3, existed ubiquitously in both tissues and demonstrated an invariable preference for the regulation of developmentally-related genes. However, the bivalent domains tend towards a “winner-takes-all” approach to regulate the expression of associated genes. We also verified the above results in mouse ES cells. As expected, the results in ES cells are consistent with those in cerebrum and testis. In conclusion, we present two very important findings. One is that H3K4me3 and H3K27me3 rarely occur in silent genes. The other is that bivalent domains may adopt a “winner-takes-all” principle to regulate gene expression

    The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    Get PDF
    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types

    Production and characterization of a recombinant single-chain antibody against Hantaan virus envelop glycoprotein

    Get PDF
    Hantaan virus (HTNV) is the type of Hantavirus causing hemorrhagic fever with renal syndrome, for which no specific therapeutics are available so far. Cell type-specific internalizing antibodies can be used to deliver therapeutics intracellularly to target cell and thus, have potential application in anti-HTNV infection. To achieve intracellular delivery of therapeutics, it is necessary to obtain antibodies that demonstrate sufficient cell type-specific binding, internalizing, and desired cellular trafficking. Here, we describe the prokaryotic expression, affinity purification, and functional testing of a single-chain Fv antibody fragment (scFv) against HTNV envelop glycoprotein (GP), an HTNV-specific antigen normally located on the membranes of HTNV-infected cells. This HTNV GP-targeting antibody, scFv3G1, was produced in the cytoplasm of Escherichia coli cells as a soluble protein and was purified by immobilized metal affinity chromatography. The purified scFv possessed a high specific antigen-binding activity to HTNV GP and HTNV-infected Vero E6 cells and could be internalized into HTNV-infected cells probably through the clathrin-dependent endocytosis pathways similar to that observed with transferrin. Our results showed that the E. coli-produced scFv had potential applications in targeted and intracellular delivery of therapeutics against HTNV infections

    Essays on Environmental Policy and Climate Change

    No full text
    These essays study environmental policy and regulation, ecosystem service valuation, and the economic impacts of climate change. Chapter 1 explores the role of coastal wetlands in reducing property damage during tropical cyclones impacting the U.S. and estimates the economic value of this protective service. Chapter 2 investigates the effectiveness of a large-scale green stimulus measure in China: a major sales tax cut for greener vehicles. Chapter 3 studies the role of extreme weather in time-use decisions in China

    Synthesis and higher catalytic property of the novel bimetallic Ni–Fe/SiO 2

    No full text

    New discrimination diagrams for basalts based on big data research

    No full text
    In recent days, discrimination diagrams have been widely used for tracing the tectonic settings and origins of basalts from orogenic belts. However, conventional discrimination diagrams are not accurate enough. Here, we reported six new discrimination diagrams obtained from the global database using data mining methods. For most individual diagrams, island arc basalt can be nearly 100% was identified, whereas ocean island basalt and mid-ocean ridge basalt can be discriminated from each other with less than 10% of overlap, under a confidence coefficient of 85%. Using the six new discrimination diagrams together, basalts of different origins can be efficiently identified
    corecore