127 research outputs found

    Survival Comparison Between Squamous Cell Carcinoma and Adenocarcinoma for Radiotherapy-Treated Patients with Stage IIB-IVA Cervical Cancer

    Get PDF
    ObjectiveTo compare the prognostic significance of adenocarcinoma (AC) with squamous cell carcinoma (SCC) on overall survival (OS) in patients with stage IIB-IVA cervical cancer (CC) treated by external beam radiotherapy (EBRT) and brachytherapy (BRT) with/without chemotherapy registered in the Surveillance, Epidemiology, and End Results database.MethodsData of eligible patients were extracted between 2004 and 2016. A univariate analysis was conducted using the cumulative incidence function (CIF) by considering competing events and compared using Gray’s test. The significant variables in univariate analysis were further evaluated in a multivariate analysis performed with the Fine-Gray regression model. Propensity score matching (PSM) analysis was also employed to reconfirm the results found in the present study.ResultsA total of 2,243 patients with SCC and 176 patients with AC were extracted from the database. The 5-year OS rates were 57.8% in the SCC group and 52.8% in the AC group. 149 patients died of causes other than CC—considered as competing events. Compared with the SCC group, patients diagnosed with AC had statistically significant worse 5-year OS rate before and after PSM. In the multivariate Fine-Gray regression model, the histological subtype of AC was proven as an independent prognostic factor associated with poorer OS before [hazard ratio (HR) = 1.340; 95% confidence interval (CI): 1.081-1.660; P = 0.007] and after [HR = 1.376; 95% CI: 1.107-1.711; P = 0.004] PSM.ConclusionsThe histological subtype of AC is significantly correlated with impaired OS as an independent prognostic variable in patients with stage IIB-IVA CC who received EBRT and BRT compared to patients with SCC. Future studies should incorporate effective and individualized treatment strategies into clinical decision-making to improve the unsatisfactory survival outcomes for patients with AC

    Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography

    Get PDF
    Among the various challenges that spaceborne radar observations of the ocean face, the following two issues are probably of a higher priority: inadequate dynamic resolution, and ineffective vertical penetration. It is therefore the vision of the National Laboratory for Marine Science and Technology of China that two highly anticipated breakthroughs in the coming decade are likely to be associated with radar interferometry and ocean lidar (OL) technology, which are expected to make a substantial contribution to a submesoscale-resolving and depth-resolving observation of the ocean. As an expanded follow-up of SWOT and an oceanic counterpart of CALIPSO, the planned “Guanlan” science mission comprises a dual-frequency (Ku and Ka) interferometric altimetry (IA), and a near-nadir pointing OL. Such an unprecedented combination of sensor systems has at least three prominent advantages. (i) The dual-frequency IA ensures a wider swath and a shorter repeat cycle which leads to a significantly improved temporal and spatial resolution up to days and kilometers. (ii) The first spaceborne active OL ensures a deeper penetration depth and an all-time detection which leads to a layered characterization of the optical properties of the subsurface ocean, while also serving as a near-nadir altimeter measuring vertical velocities associated with the divergence, and convergence of geostrophic eddy motions in the mixed layer. (iii) The simultaneous functioning of the IA/OL system allows for an enhanced correction of the contamination effects of the atmosphere and the air-sea interface, which in turn considerably reduces the error budgets of the two sensors. As a result, the integrated IA/OL payload is expected to resolve the ocean variability at submeso and sub-week scales with a centimeter-level accuracy, while also partially revealing marine life systems and ecosystems with a 10-m vertical interval in the euphotic layer, moving a significant step forward toward a “transparent ocean” down to the vicinity of the thermocline, both dynamically and bio-optically

    Evaluation of renal cold ischemia–reperfusion injury with intravoxel incoherent motion diffusion-weighted imaging and blood oxygenation level-dependent MRI in a rat model

    Get PDF
    Purpose: Cold ischemia-reperfusion injury (CIRI) is one of the most serious complications following renal transplantation. The current study investigated the feasibility of Intravoxel Incoherent Motion (IVIM) imaging and blood oxygenation level-dependent (BOLD) in the evaluation of different degrees of renal cold ischemia-reperfusion injury in a rat model.Methods: Seventy five rats were randomly divided into three groups (N = 25 for each group): T0: sham-operated group, T2/T4: CIRI groups with different cold ischemia hours (2, 4 h, respectively). The rat model of CIRI group was established by left kidney cold ischemia with right nephrectomy. All the rats received a baseline MRI before the surgery. Five rats in each group were randomly selected to undergo an MRI examination at 1 h, day 1, day 2 and day 5 after CIRI. The IVIM and BOLD parameters were studied in the renal cortex (CO), the outer stripe of the outer medulla (OSOM), and the inner stripe of the outer medulla (ISOM) followed by histological analysis to examine Paller scores, peritubular capillary (PTC) density, apoptosis rate and biochemical indicators to obtain the contents of serum creatinine (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD) and malondialdehyde (MDA).Results: The D, D*, PF and T2* values in the CIRI groups were lower than those in the sham-operated group at all timepoints (all p < 0.05). The prolonged cold ischemia times resulted in gradually lower D, D*, PF and T2* values (all p < 0.05). The D and T2* values of cortex and OSOM in Group T0 and T2 returned to the baseline level (all p > 0.05) except Group T4. The D* and PF values of cortex, OSOM and ISOM in Group T2 and T4 still remained below the normal levels (all p < 0.05) except Group T0. D, D*, PF and T2* values were strongly correlated with histopathological (Paller scores, PTC density and apoptosis rate) and the biochemistry indicators (SOD and MDA) (|r|>0.6, p < 0.001). D*, PF and T2* values were moderately to poorly correlated with some biochemistry indicators (Scr and BUN) (|r|<0.5, p < 0.05).Conclusion: IVIM and BOLD can serve as noninvasive radiologic markers for monitoring different degrees of renal impairment and recovery after renal CIRI

    Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    Get PDF
    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition

    Potential health benefits of lowering gas production and bifidogenic effect of the blends of polydextrose with inulin in a human gut model

    Get PDF
    Polydextrose is a nutrient supplement, which is widely applied in the food industry. The use of polydextrose in combination with prebiotics and probiotics has recently increased, whereas the fermentation properties of its blend have not yet been fully revealed. We evaluated the metabolic profile of polydextrose, inulin, and their blends by a batch in vitro fermentation of fifteen human fecal inocula. After 24 h of fermentation, polydextrose increased the production of gas, ammonia, and several short chain fatty acids, including propionate and butyrate, when compared to its blends, inulin, and fructo-oligosaccharides. Furthermore, polydextrose had the slowest degradation rate of all the carbohydrates tested, consistent with its partial fermentation in the distal colon. The 16S rRNA gene sequencing analysis of the gut microbiome exhibited significantly increased relative abundance of Clostridium_XVIII, Megamonas, Mitsuokella, and Erysipelotrichaceae_incertae_sedis in polydextrose compared to other carbohydrates. On the other hand, the blends of polydextrose and inulin (1:1 or 2:1) showed reduced gas production and similar bifidogenicity to inulin alone. The blends not only had similar alpha-diversity and PCoA to inulin but also had a similar abundance of beneficial bacteria, such as Faecalibacterium and Roseburia, suggesting potential health benefits. Also their low gas production was likely due to the abundance of Faecalibacterium and Anaerostipes, which were negatively correlated with gas production. Additionally, our in vitro fermentation model shows advantages in the large-scale assessment of fermentation performance

    Spatiotemporal dynamic of subtropical forest carbon storage and its resistance and resilience to drought in China

    Get PDF
    Subtropical forests are rich in vegetation and have high photosynthetic capacity. China is an important area for the distribution of subtropical forests, evergreen broadleaf forests (EBFs) and evergreen needleleaf forests (ENFs) are two typical vegetation types in subtropical China. Forest carbon storage is an important indicator for measuring the basic characteristics of forest ecosystems and is of great significance for maintaining the global carbon balance. Drought can affect forest activity and may even lead to forest death and the stability characteristics of different forest ecosystems varied after drought events. Therefore, this study used meteorological data to simulate the standardized precipitation evapotranspiration index (SPEI) and the Biome-BGC model to simulate two types of forest carbon storage to quantify the resistance and resilience of EBF and ENF to drought in the subtropical region of China. The results show that: 1) from 1952 to 2019, the interannual drought in subtropical China showed an increasing trend, with five extreme droughts recorded, of which 2011 was the most severe one; 2) the simulated average carbon storage of the EBF and ENF during 1985-2019 were 130.58 t·hm-2 and 78.49 t·hm-2, respectively. The regions with higher carbon storage of EBF were mainly concentrated in central and southeastern subtropics, where those of ENF mainly distributed in the western subtropic; 3) The median of resistance of EBF was three times higher than that of ENF, indicating the EBF have stronger resistance to extreme drought than ENF. Moreover, the resilience of two typical forest to 2011 extreme drought and the continuous drought events during 2009 - 2011 were similar. The results provided a scientific basis for the response of subtropical forests to drought, and indicating that improve stand quality or expand the plantation of EBF may enhance the resistance to drought in subtropical China, which provided certain reference for forest protection and management under the increasing frequency of drought events in the future

    Genome-Wide Association Study for Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landraces (Triticum aestivum L.) From the Yellow and Huai River Valleys

    Get PDF
    Stripe rust (also known as yellow rust), caused by the pathogen Puccinia striiformis f. sp. tritici (Pst), is a common and serious fungal disease of wheat (Triticum aestivum L.) worldwide. To identify effective stripe rust resistance loci, a genome-wide association study was performed using 152 wheat landraces from the Yellow and Huai River Valleys in China based on Diversity Arrays Technology and simple sequence repeat markers. Phenotypic evaluation of the degree of resistance to stripe rust at the adult-plant stage under field conditions was carried out in five environments. In total, 19 accessions displayed stable, high degrees of resistance to stripe rust development when exposed to mixed races of Pst at the adult-plant stage in multi-environment field assessments. A marker–trait association analysis indicated that 51 loci were significantly associated with adult-plant resistance to stripe rust. These loci included 40 quantitative trait loci (QTL) regions for adult-plant resistance. Twenty identified resistance QTL were linked closely to previously reported yellow rust resistance genes or QTL regions, which were distributed across chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4A, 4B, 5B, 6B, 7A, 7B, and 7D. Six multi-trait QTL were detected on chromosomes 1B, 1D, 2B, 3A, 3B, and 7D. Twenty QTL were mapped to chromosomes 1D, 2A, 2D, 4B, 5B, 6A, 6B, 6D, 7A, 7B, and 7D, distant from previously identified yellow rust resistance genes. Consequently, these QTL are potentially novel loci for stripe rust resistance. Among the 20 potentially novel QTL, five (QDS.sicau-2A, QIT.sicau-4B, QDS.sicau-4B.2, QDS.sicau-6A.3, and QYr.sicau-7D) were associated with field responses at the adult-plant stage in at least two environments, and may have large effects on stripe rust resistance. The novel effective QTL for adult-plant resistance to stripe rust will improve understanding of the genetic mechanisms that control the spread of stripe rust, and will aid in the molecular marker-assisted selection-based breeding of wheat for stripe rust resistance

    Oncogenic state and cell identity combinatorially dictate the susceptibility of cells within glioma development hierarchy to IGF1R targeting

    Get PDF
    Glioblastoma is the most malignant cancer in the brain and currently incurable. It is urgent to identify effective targets for this lethal disease. Inhibition of such targets should suppress the growth of cancer cells and, ideally also precancerous cells for early prevention, but minimally affect their normal counterparts. Using genetic mouse models with neural stem cells (NSCs) or oligodendrocyte precursor cells (OPCs) as the cells‐of‐origin/mutation, it is shown that the susceptibility of cells within the development hierarchy of glioma to the knockout of insulin‐like growth factor I receptor (IGF1R) is determined not only by their oncogenic states, but also by their cell identities/states. Knockout of IGF1R selectively disrupts the growth of mutant and transformed, but not normal OPCs, or NSCs. The desirable outcome of IGF1R knockout on cell growth requires the mutant cells to commit to the OPC identity regardless of its development hierarchical status. At the molecular level, oncogenic mutations reprogram the cellular network of OPCs and force them to depend more on IGF1R for their growth. A new‐generation brain‐penetrable, orally available IGF1R inhibitor harnessing tumor OPCs in the brain is also developed. The findings reveal the cellular window of IGF1R targeting and establish IGF1R as an effective target for the prevention and treatment of glioblastoma

    Prediction study of prognostic nutrition index on the quality of life of patients with cervical cancer undergoing radiotherapy and chemotherapy

    No full text
    Objective To assess the prognostic nutritional index (PNI) and quality of life (QOL) of patients with cervical cancer (CC) who underwent radiotherapy and chemotherapy and to reveal the effect of PNI on QOL and its prognostic value. Methods A total of 138 CC patients who underwent radiotherapy and chemotherapy in the Second Affiliated Hospital of Fujian Medical University from January 2020 to October 2022 were selected as the study subjects via convenient sampling. According to the PNI cut-off value of 48.8, they were divided into a high-PNI group and a low-PNI group, and the quality of life of the two groups was compared. The Kaplan-Meier method was used to draw the survival curve, and the Log-Rank test was employed to compare the survival rates of the two groups. Results The scores of physical functioning and overall QOL in the high-PNI group were significantly higher than those in the low-PNI group (P < 0.05). The scores of fatigue, nausea and vomiting, pain and diarrhea were higher than those in the low-PNI group, and the difference was statistically significant (P < 0.05). The objective response rates were 96.77% and 81.25% in the high-PNI group and the low-PNI group, respectively, and the difference was statistically significant (P = 0.045). The 1-year survival rates of patients with high PNI and low PNI were 92.55% and 72.56% in the high-PNI group and the low-PNI group, respectively; the difference in survival rates was statistically significant (P = 0.006). Conclusion The overall quality of life of CC patients with low PNI receiving radiotherapy and chemotherapy is lower than that of patients with high PNI. Low PNI reduces the tolerance to radiotherapy and chemotherapy and the objective response rate, which can be used as a prognostic indicator for cervical cancer patients
    • 

    corecore