29 research outputs found

    Bovine PrPC directly interacts with αB-crystalline

    Get PDF
    AbstractWe used a bovine brain cDNA library to perform a yeast two-hybrid assay with bovine mature PrPC as bait. The screening result showed that αB-crystalline interacted with PrPC. The interaction was further evaluated both in vivo and in vitro with different methods, such as immunofluorescent colocalization, native polyacrylamide-gel electrophoresis, and IAsys biosensor assays. The results suggested that αB-crystalline may have the ability to refold denatured prion proteins, and provided first evidence that αB-crystalline is directly associated with prion protein

    Polygonatum cyrtonema polysaccharides reshape the gut microbiota to ameliorate dextran sodium sulfate-induced ulcerative colitis in mice

    Get PDF
    Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized inflammatory imbalance, intestinal epithelial mucosal damage, and dysbiosis of the gut microbiota. Polygonatum cyrtonema polysaccharides (PCPs) can regulate gut microbiota and inflammation. Here, the different doses of PCPs were administered to dextran sodium sulfate-induced UC mice, and the effects of the whole PCPs were compared with those of the fractionated fractions PCP-1 (19.9 kDa) and PCP-2 (71.6 and 4.2 kDa). Additionally, an antibiotic cocktail was administered to UC mice to deplete the gut microbiota, and PCPs were subsequently administered to elucidate the potential role of the gut microbiota in these mice. The results revealed that PCP treatment significantly optimized the lost weight and shortened colon, restored the balance of inflammation, mitigated oxidative stress, and restored intestinal epithelial mucosal damage. And, the PCPs exhibited superior efficacy in ameliorating these symptoms compared with PCP-1 and PCP-2. However, depletion of the gut microbiota diminished the therapeutic effects of PCPs in UC mice. Furthermore, fecal transplantation from PCP-treated UC mice to new UC-afflicted mice produced therapeutic effects similar to PCP treatment. So, PCPs significantly ameliorated the symptoms, inflammation, oxidative stress, and intestinal mucosal damage in UC mice, and gut microbiota partially mediated these effects

    Application of Rapid Rehabilitation Nursing in Perioperative Period of Laparoscopic Radical Prostatectomy for Prostate Cancer Patients

    No full text
    The purpose of the study is to explore the application of rapid rehabilitation nursing strategy in the perioperative period of laparoscopic radical prostatectomy for patients with prostate cancer. A total of 120 patients with prostate cancer undergoing laparoscopic radical prostatectomy were randomly divided into two groups, with 60 cases per group. The control group was given routine nursing care, and the experimental group received rapid rehabilitation nursing strategies. The stress hormone (cortisol and norepinephrine) levels, patient satisfaction, length of hospitalization, hospitalization costs, and postoperative complication were compared between the two groups before and after nursing. The serum cortisol and norepinephrine levels in the control group before nursing were similar to those in the experimental group (P>0.05). The stress hormone levels in the experimental group were lower than those in the control group (P<0.05). It was found that the experimental group had reduced operation time, less intraoperative blood loss, shortened exhaust time, and hospitalization stay and was earlier to eat and to get out of bed than the control group (P<0.05). The time for the patients in the experimental group to pull out the drainage tube was significantly shorter than that of the control group (P<0.05), and the hospitalization costs were fewer than the control group (P<0.05). The rates of postoperative complications including nausea, vomiting, bleeding, and fever in the experimental group were significantly lower than those in the control group (P<0.05). In conclusion, the study suggests that rapid rehabilitation nursing strategies can reduce the stress hormone levels, shorten the length of hospitalization, reduce hospitalization costs, reduce postoperative complication rates, and improve patient satisfaction for prostate cancer patients undergoing laparoscopic radical prostatectomy, in support of clinical application

    Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress

    No full text
    Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity

    Analysis of Extreme Rain and Snow Weather Dynamic and Water Vapor Conditions in Northeast China from 17 to 19 November 2020

    No full text
    Based on hourly precipitation data from 2413 national ground observation stations in China and ERA5 (0.25° × 0.25°), this study analyzes the characteristics and causes of extreme rainfall and snow in northeast China from 17–19 November 2020. The results show that extreme precipitation is mainly attributed to the abnormally strong large-scale low vortex and ground cyclone. The significant high-level and low-level coupling in areas with strong rain and snow is conducive to the continuous upward motion, which provides favorable dynamic conditions for the generation and development of extreme precipitation. The frontogenesis effect below the 850 hPa level is obvious, and the extreme precipitation period corresponds to the meeting of the north and south front areas. The symmetrical unstable atmosphere of 925 hPa~700 hPa is forced by the frontogenesis, which strengthens the oblique rising of the low layer and increases the instability, leading to the strengthened development of precipitation. For heavy rainfall and snow in early winter in China, water vapor transport is crucial. The extremely strong low-level jet also provides extremely strong water vapor conditions for the occurrence of heavy rain and snow. The analysis of the extreme rain and snow characteristics and formation mechanism of this weather process can deepen the understanding of extreme weather processes, and provide a useful reference for the research and prediction of extreme precipitation processes

    Celastrol alleviated acute kidney injury by inhibition of ferroptosis through Nrf2/GPX4 pathway

    No full text
    Ferroptosis is an important pathological process in acute kidney injury (AKI) which could lead to chronic kidney disease (CKD) and end-stage renal disease (ESRD). As an active ingredient of Chinese medicine Tripterygium wilfordii, celastrol has been reported to alleviate inflammation and preclinical studies have confirmed its anticancer effect. In the present study, we investigated the renal protective effects of celastrol against cisplatin induced AKI. Mice were administrated cisplatin by intraperitoneal injection and we found that celastrol reduced serum levels of BUN and creatinine, inhibited renal dysfunction, inflammation and oxidative stress. In addition, renal iron accumulation and ferroptosis were significantly reduced by celastrol treatment. Further mechanistic analyses suggested that Nrf2 is essential for celastrol upregulated GPX4 to alleviate ferroptosis and reduction of LDH release, intracellular iron accumulation and lipid peroxidation. These findings expand the potential uses of celastrol for treatment of various kinds of AKI associated with ferroptosis

    Table4_Identification and validation of ferroptosis-related lncRNA signatures as a novel prognostic model for glioma.XLSX

    No full text
    Background: Ferroptosis is a newly discovered form of regulated cell death with distinct properties and recognizing functions involved in physical conditions or various diseases, including cancers. However, the relationship between gliomas and ferroptosis-related lncRNAs (FRLs) remains unclear.Methods: We collected a total of 1850 samples from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEX) databases, including 698 tumor and 1,152 normal samples. A list of ferroptosis-related genes was downloaded from the Ferrdb website. Differentially expressed FRLs (DEFRLS) were analyzed using the “limma” package in R software. Subsequently, prognosis-related FRLs were obtained by univariate Cox analysis. Finally, a prognostic model based on the 3 FRLs was constructed using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. The prognostic power of the model was assessed using receiver operating characteristic (ROC) curve analysis and Kaplan-Meier (K-M) survival curve analysis. In addition, we further explored the relationship of the immune landscape and somatic mutations to prognostic model characteristics. Finally, we validated the function of LINC01426 in vitro.Results: We successfully constructed a 3-FRLs signature and classified glioma patients into high-risk and low-risk groups based on the risk score calculated from this signature. Compared with traditional clinicopathological features [age, sex, grade, isocitrate dehydrogenase (IDH) status], the prognostic accuracy of this model is more stable and stronger. Additionally, the model had stable predictive power for overall survival over a 5-year period. In addition, we found significant differences between the two groups in cellular immunity, the numbers of many immune cells, including NK cells, CD4+, CD8+ T-cells, and macrophages, and the expression of many immune-related genes. Finally, the two groups were also significantly different at the level of somatic mutations, especially in glioma prognosis-related genes such as IDH1 and ATRX, with lower mutation rates in the high-risk group leading to poorer prognosis. Finally, we found that the ferroptosis process of glioma cells was inhibited after knocking down the expression of LINC01426.Conclusion: The proposed 3-FRL signature is a promising biomarker for predicting prognostic features in glioma patients.</p

    Table1_Identification and validation of ferroptosis-related lncRNA signatures as a novel prognostic model for glioma.XLSX

    No full text
    Background: Ferroptosis is a newly discovered form of regulated cell death with distinct properties and recognizing functions involved in physical conditions or various diseases, including cancers. However, the relationship between gliomas and ferroptosis-related lncRNAs (FRLs) remains unclear.Methods: We collected a total of 1850 samples from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEX) databases, including 698 tumor and 1,152 normal samples. A list of ferroptosis-related genes was downloaded from the Ferrdb website. Differentially expressed FRLs (DEFRLS) were analyzed using the “limma” package in R software. Subsequently, prognosis-related FRLs were obtained by univariate Cox analysis. Finally, a prognostic model based on the 3 FRLs was constructed using Cox regression analysis with the least absolute shrinkage and selection operator (LASSO) algorithm. The prognostic power of the model was assessed using receiver operating characteristic (ROC) curve analysis and Kaplan-Meier (K-M) survival curve analysis. In addition, we further explored the relationship of the immune landscape and somatic mutations to prognostic model characteristics. Finally, we validated the function of LINC01426 in vitro.Results: We successfully constructed a 3-FRLs signature and classified glioma patients into high-risk and low-risk groups based on the risk score calculated from this signature. Compared with traditional clinicopathological features [age, sex, grade, isocitrate dehydrogenase (IDH) status], the prognostic accuracy of this model is more stable and stronger. Additionally, the model had stable predictive power for overall survival over a 5-year period. In addition, we found significant differences between the two groups in cellular immunity, the numbers of many immune cells, including NK cells, CD4+, CD8+ T-cells, and macrophages, and the expression of many immune-related genes. Finally, the two groups were also significantly different at the level of somatic mutations, especially in glioma prognosis-related genes such as IDH1 and ATRX, with lower mutation rates in the high-risk group leading to poorer prognosis. Finally, we found that the ferroptosis process of glioma cells was inhibited after knocking down the expression of LINC01426.Conclusion: The proposed 3-FRL signature is a promising biomarker for predicting prognostic features in glioma patients.</p
    corecore