91 research outputs found

    Growth and optical properties of GaN/AlN quantum wells

    Full text link
    We demonstrate the growth of GaN/AlN quantum well structures by plasma-assisted molecular-beam epitaxy by taking advantage of the surfactant effect of Ga. The GaN/AlN quantum wells show photoluminescence emission with photon energies in the range between 4.2 and 2.3 eV for well widths between 0.7 and 2.6 nm, respectively. An internal electric field strength of 9.2±1.09.2\pm 1.0 MV/cm is deduced from the dependence of the emission energy on the well width.Comment: Submitted to AP

    Quantum Yield Calculations for Strongly Absorbing Chromophores

    Full text link
    This article demonstrates that a commonly-made assumption in quantum yield calculations may produce errors of up to 25% in extreme cases and can be corrected by a simple modification to the analysis.Comment: 3 pages, 2 figures. Accepted by Journal of Fluorescenc

    Mise en oeuvre expérimentale d’impacts basse vitesse sur matériau énergétique

    Get PDF
    Les matériaux énergétiques présentent un caractère sensible aux sollicitations mécaniques, chimiques ou thermiques « faibles », dont l’origine est probablement liée à un endommagement microstructural progressif du matériau. La butalite analysée dans le cadre de notre étude est un propergol composite, constitué de grains de perchlorate d’ammonium et d’une matrice polymérique de type PBHT. Pour décrire la réponse thermomécanique sous faible choc de ce matériau à l’échelle mésoscopique, nous réalisons des essais d’impacts basse vitesse à la tour de chute, sous différentes  configurations expérimentales, en couplant un enregistrement par caméra rapide à une analyse ante et post mortem de l’échantillon par microtomographie X..

    Holocene Hydrographic Variations From the Baltic‐North Sea Transitional Area (IODP Site M0059)

    Get PDF
    Deoxygenation affects many continental shelf seas across the world today and results in increasing areas of hypoxia (dissolved oxygen concentration ([O2]) <1.4 ml/L). The Baltic Sea is increasingly affected by deoxygenation. Deoxygenation correlates with other environmental variables such as changing water temperature and salinity and is directly linked to ongoing global climate change. To place the ongoing environmental changes into a larger context and to further understand the complex Baltic Sea history and its impact on North Atlantic climate, we investigated a high accumulation-rate brackish-marine sediment core from the Little Belt (Site M0059), Danish Straits, NW Europe, retrieved during the Integrated Ocean Drilling Program (IODP) Expedition 347. We combined benthic foraminiferal geochemistry, faunal assemblages, and pore water stable isotopes to reconstruct seawater conditions (e.g., oxygenation, temperature, and salinity) over the past 7.7 thousand years (ka). Bottom water salinity in the Little Belt reconstructed from modeled pore water oxygen isotope data increased between 7.7 and 7.5 ka BP as a consequence of the transition from freshwater to brackish-marine conditions. Salinity decreased gradually (from 30 to 24) from 4.1 to ~2.5 ka BP. By using the trace elemental composition (Mg/Ca, Mn/Ca, and Ba/Ca) and stable carbon and oxygen isotopes of foraminiferal species Elphidium selseyensis and E. clavatum, we identified that generally warming and hypoxia occurred between about 7.5 and 3.3 ka BP, approximately coinciding in time with the Holocene Thermal Maximum (HTM). These changes of bottom water conditions were coupled to the North Atlantic Oscillation (NAO) and relative sea level change

    Cdc42 controls the dilation of the exocytotic fusion pore by regulating membrane tension.

    Get PDF
    Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.journal articleresearch support, non-u.s. gov't2014 Oct 152014 08 20importe

    Rab27a and Rab27b control different steps of the exosome secretion pathway

    Get PDF
    Exosomes are secreted membrane vesicles that share structural and biochemical characteristics with intraluminal vesicles of multivesicular endosomes (MVEs). Exosomes could be involved in intercellular communication and in the pathogenesis of infectious and degenerative diseases. The molecular mechanisms of exosome biogenesis and secretion are, however, poorly understood. Using an RNA interference (RNAi) screen, we identified five Rab GTPases that promote exosome secretion in HeLa cells. Among these, Rab27a and Rab27b were found to function in MVE docking at the plasma membrane. The size of MVEs was strongly increased by Rab27a silencing, whereas MVEs were redistributed towards the perinuclear region upon Rab27b silencing. Thus, the two Rab27 isoforms have different roles in the exosomal pathway. In addition, silencing two known Rab27 effectors, Slp4 (also known as SYTL4, synaptotagmin-like 4) and Slac2b (also known as EXPH5, exophilin 5), inhibited exosome secretion and phenocopied silencing of Rab27a and Rab27b, respectively. Our results therefore strengthen the link between MVEs and exosomes, and introduce ways of manipulating exosome secretion in vivo

    Photoreflectance on wide bandgap nitride semiconductors

    No full text
    International audienc
    corecore