14 research outputs found

    Bivalirudin versus heparin in contemporary percutaneous coronary interventions for patients with acute coronary syndrome: a systematic review and meta-analysis

    Get PDF
    Background: Bivalirudin is associated with fewer major bleeding events than heparin in patients undergoing percutaneous coronary intervention (PCI), but confounding effects of concomitant glycoprotein IIb/IIIa inhibitors, routine femoral artery access, and less potent effects of clopidogrel limits meaningful comparisons. The present study is a systematic review and meta-analysis to compare bivalirudin to heparin in contemporary practice. Methods: The Cochrane Library, PubMed, EMBASE, and Ovid MEDLINE databases were searched for relevant studies, including comparisons between bivalirudin and heparin in the current medical era from inception to December 23, 2021. Studies reporting incidences of major adverse cardiac events (MACE) and net adverse clinical events (NACE) in patients undergoing PCI and meeting the inclusion criteria were retained. Data extraction was performed by three independent reviewers. Results: The meta-analysis included 8 studies. Compared to heparin, bivalirudin during PCI was associated with a lower NACE risk, lower all-cause death, and similar MACE risk, with a pooled risk ratio of 0.82 (95% confidence interval [CI] 0.69–0.97, p = 0.02), 0.83 (95% CI 0.74–0.94, p = 0.002), and 0.93 (95% CI 0.78–1.10, p = 0.38), respectively. Moreover, the reduction in NACE was mainly attributed to reduced bleeding (22% reduction in the risk of major bleeding, 95% CI 0.63–0.97, p = 0.03). Conclusions: These findings suggest that bivalirudin use during PCI reduced the risk of NACE and all-cause death but did not reduce the risk of MACE compared with heparin use in PCI. More studies specifically designed for anticoagulation strategies and a personalized anticoagulation regimen to comprehensively balance bleeding and ischemia risks are required

    Bivalirudin versus heparin in contemporary percutaneous coronary interventions for patients with acute coronary syndrome: a systematic review and meta-analysis

    Get PDF
    Bivalirudin is associated with fewer major bleeding events than heparin in patients undergoing percutaneous coronary intervention (PCI), but confounding effects of concomitant glycoprotein IIb/IIIa inhibitors, routine femoral artery access, and less potent effects of clopidogrel limits meaningful comparisons. The present study is a systematic review and meta-analysis to compare bivalirudin to heparin in contemporary practice. The Cochrane Library, PubMed, EMBASE, and Ovid MEDLINE databases were searched for relevant studies, including comparisons between bivalirudin and heparin in the current medical era from inception to December 23, 2021. Studies reporting incidences of major adverse cardiac events (MACE) and net adverse clinical events (NACE) in patients undergoing PCI and meeting the inclusion criteria were retained. Data extraction was performed by three independent reviewers. The meta-analysis included 8 studies. Compared to heparin, bivalirudin during PCI was associated with a lower NACE risk, lower all-cause death, and similar MACE risk, with a pooled risk ratio of 0.82 (95% confidence interval [CI] 0.69-0.97, p = 0.02), 0.83 (95% CI 0.74-0.94, p = 0.002), and 0.93 (95% CI 0.78-1.10, p = 0.38), respectively. Moreover, the reduction in NACE was mainly attributed to reduced bleeding (22% reduction in the risk of major bleeding, 95% CI 0.63-0.97, p = 0.03). These findings suggest that bivalirudin use during PCI reduced the risk of NACE and all-cause death but did not reduce the risk of MACE compared with heparin use in PCI. More studies specifically designed for anticoagulation strategies and a personalized anticoagulation regimen to comprehensively balance bleeding and ischemia risks are required

    Impact of Thrombocytopenia on In-Hospital Outcome in Patients Undergoing Percutaneous Coronary Intervention

    Get PDF
    Background. Thrombocytopenia was intuitively considered to be associated with higher risk of bleeding and multiple comorbidities after percutaneous coronary intervention (PCI). However, controversial results exist, and the real-world clinical impact of thrombocytopenia in patients undergoing PCI is largely unknown. The aim of this study was to evaluate the influence of baseline thrombocytopenia on the prognosis of patients undergoing PCI. Methods. Using the West China Hospital Inpatient Sample database, patients who underwent PCI were identified from August 2012 to January 2019. Baseline thrombocytopenia was defined as a preprocedural platelet count of or less obtained from a routine blood sample taken within 48 hours before coronary PCI. The clinical effect of the advanced thrombocytopenia group (), according to the median value of platelet count in the thrombocytopenia cohort, was further assessed. The primary outcome was a composite of in-hospital death, bleeding events, and post-PCI transfusion. Results. Of 9531 patients enrolled in our study, 936 had baseline thrombocytopenia and 8595 patients did not have. There were no significant differences in the primary outcome between the two groups. However, advanced thrombocytopenia was independently associated with higher risk of primary outcome (OR 1.67, 95% CI 1.06 to 2.65, ). Acute coronary syndrome (ACS) patients with thrombocytopenia were associated with higher odds of major bleeding () (OR 2.56, 95% CI 1.24 to 5.44, ). Compared with the nonthrombocytopenia group, the thrombocytopenia group with ticagrelor use had higher odds of major bleeding (OR 9.7, 95% CI 1.57 to 60.4 versus OR 0.22, 95% CI 0.03 to 1.69, interaction ). Conclusions. It seems feasible for patients with thrombocytopenia to receive PCI, but close attention should be paid to advanced thrombocytopenia, the risk of postprocedure bleeding in ACS patients, and the use of more potent P2Y12 inhibitor

    Short dual antiplatelet therapy in patients with high bleeding risk undergoing percutaneous coronary intervention: a systematic review and meta-analysis.

    No full text
    Background The efficacy and safety of an abbreviated duration of dual antiplatelet therapy (DAPT) in patients with high bleeding risk (HBR) undergoing percutaneous coronary intervention (PCI) (PCI-HBR patients) remain controversial. Methods The Cochrane Library, PubMed, EMBASE, and Ovid MEDLINE databases were searched. Studies that enrolled PCI-HBR patients as research subjects, compared different DAPT durations, and reported incidences of major adverse cardiac events (MACE) and net adverse clinical events (NACE) in PCI-HBR patients were obtained. The studies were stratified according to the DAPT duration (1, 3, and 6 months), and meta-analysis was subsequently performed. Results Nine studies (10 cohorts) were included in the meta-analysis. Compared with those who received DAPT for >1 month, PCI-HBR patients who received the 1-month DAPT regimen had comparable risks of NACE and MACE. Compared to those who received DAPT for >3 months, the risk of developing MACE in PCI-HBR patients who received the 3-month DAPT was not increased; however, the risk of ischemic stroke and stent thrombosis increased. Compared to those who received DAPT for >6 months, patients who received the 6-month DAPT had a reduction in the risk of major bleeding without an increase in NACE and MACE. Conclusions Shortening the DAPT regimen to 1 or 6 months did not increase the risk of MACE, and the 6-month DAPT regimen reduced the risk of major bleeding. However, the 3-month DAPT regimen increased the risk of ischemic stroke. Thus, shortened DAPT reduced the risk of MACE and bleeding, with a small absolute increase in ischemic strokes

    Nontraditional Luminescent Molecular Aggregates Encapsulated by Wormlike Silica Nanoparticles for Latent Fingerprint Detection

    No full text
    The phenomenon of nontraditional luminescence has attracted wide attention and curiosity of researchers due to its inexplicable photoluminescence paradigm without aromatic or extended pi-systems. The present work puts forward a neotype of a light-emitting nitrogenous small molecule, namely, N-stearoyl-hydroxyproline (L-C-16-Hyp), which could emit weak light in aggregation states through the restriction mechanism of intramolecular motion, exhibiting properties comparable to those of AIEgens. Using these molecular aggregates as anionic surfactant micelles to incorporate within the silica matrix, we prepared fluorescent nanoparticles (FL-NPs) by a one-pot method for expedient visualization of latent fingerprints (LFPs). The FL-NPs exhibit an excitation range from 335 to 365 nm, resulting in nontraditional luminescence observed between 410 and 440 nm. The enhanced luminescent FL-NPs may derive from the collective entities or assemblies of restricted L-C16-Hyp, which can be reasonably explicated by an effect termed as cluster-triggered emission (CTE). Theoretical calculations demonstrated that this luminescence pattern belongs to partial charge transfer, which is mainly attributed to the close interaction between the tertiary amino and adjacent carboxyl in the L-C16-Hyp structure. Moreover, some merits of FL-NPs, such as wormlike nanomorphology, stable photophysical properties, low toxicity, great adhesion to multiple substrates, easy to get raw material, an inexpensive, simple process, and rapid detection without any further modification or assistance, provide the feasibility of efficacious LFP detection. Overall, this study will provide insights into the design and application of luminescent materials with unconventional groups

    Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy

    No full text
    Okra seeds (OSD) have been proved to possess significantly anti-fatigue activity and due to their high contents of flavonoids and polyphenols. While, the quality of OSD is easily affected by harvest time, region and other factors. In this research, the rapid method based on Fourier transform near infrared (FT-NIR) spectroscopy was developed for quality assessment of okra seeds. Firstly, 120 samples’ spectra were acquired, and quantification of isoquercitrin, quercetin-3-O-gentiobioside, total phenols (TP) and antioxidant assays including 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant power (FRAP) were conducted. Next, partial least squares (PLS) regression and full cross-validation were applied to develop calibration models for these data, and external validation was used to determine models’ quality. The coefficient of determination for calibration ( R c 2 ), the root mean square error of cross validation (RMSECV) and the corresponding determination coefficients for cross-validation ( R cv 2 ) proved all these models have excellent precision. Besides, the residual predictive deviation (RPD) of models (4.07 for isoquercitrin, 4.04 for quercetin-3-O-gentiobioside, 9.79 for TP, 4.58 for DPPH and 4.12 for FRAP) also demonstrated that these models possessed good predicative ability. All these results showed that FT-NIR spectroscopy could be used to rapidly determine active compounds and antioxidant activity of okra seeds

    Mathematical Simulation and Experimental Verification of Carburizing Quenching Process Based on Multi-Field Coupling

    No full text
    Based on the multi-field coupling effect of temperature, diffusion, and phase change, the finite element model of carburizing and quenching was established. The 20CrMnTiH steel helical gear as the research object, prediction accuracy of carburizing, and quenching model of complex helical gear was studied. The material properties database of experimental steel was established by JMatPro, and the material thermophysical parameters needed in the calculation process were obtained. The carburizing and quenching process of transmission helical gear was numerically simulated by thermodynamic three-dimensional coupling analysis method combined with actual heat treatment process. The microstructure morphology, macro hardness, and deformation were characterized. The experimental results show that the microstructure of the hardened surface layer was acicular martensite and a small amount of residual austenite. The highest hardness appears at the surface layer of 778.8 HV, the effective hardened layer depth was 0.9 mm, and the maximum deformation of the gear was 0.055 mm. By comparing the experimental measurement results with the simulation results, they were in good agreement, which verifies the accuracy of the finite element model. This indicates that the model has good prediction ability in carburizing and quenching process

    Tailoring the electronic conductivity of high-loading cathode electrodes for practical sulfide-based all-solid-state batteries

    No full text
    Sulfide-based all-solid-state batteries (ASSBs) exhibit unparalleled application value due to the high ionic conductivity and good processability of sulfide solid electrolytes (SSEs). Carbon-based conductive agents (CAs) are often used in the construction of electronic conductive networks to achieve rapid electron transfer. However, CAs accelerate the formation of decomposition products of SSEs, and their effects on sulfide-based ASSBs are not fully understood. Herein, the effect of CAs (super P, vaper-grown carbon fibers, and carbon nanotubes) on the performance of sulfide-based ASSBs is investigated under different cathode active materials mass loading (8 and 25 ​mg·cm−2). The results show that under low mass loading, the side reaction between the CAs and the SSEs deteriorates the performance of the cell, while the charge transfer promotion caused by the addition of CAs is only manifested under high mass loading. Furthermore, the gradient design strategy (enrichment of CAs near the current collector side and depletion of CAs near the electrolyte side) is applied to maximize the benefits of CAs in electron transport and reduce the adverse effects of CAs. The charge carrier transport barrier inside the high mass loading electrode is significantly reduced through the regulation of electronic conductivity. Consequently, the optimized electrode achieves a high areal capacity of 5.6 ​mAh·cm−2 at high current density (1.25 ​mA·cm−2, 0.2 ​C) at 25 °C with a capacity retention of 87.85% after 100 cycles. This work provides a promising way for the design of high-mass loading electrodes with practical application value

    Xinshubao tablet ameliorates myocardial injury against heart failure via the DCN/PPARα/PGC-1α/P300 pathway

    No full text
    Heart failure (HF) is a complex clinical syndrome with impaired ventricular ability due to structural or functional cardiac disorders. A traditional Chinese formula named Xinshubao tablet (XSB) is reported to protect cardiomyocytes and decrease the risk of HF clinically; however, the underlying mechanism of XSB on decreasing HF risk is not elucidated yet. Therefore, our study aimed to investigate the therapeutic efficacy and underlying mechanism of XSB by using HF model rats and H9c2 cells with oxygen glucose deprivation. Echocardiographic and pathological features of animal experiment showed that XSB treatment effectively improved cardiac function and ameliorated myocardial injury after 4 weeks of treatment. Cellular experiments indicated that XSB pretreatment significantly inhibited apoptosis and increased mitochondrial energy metabolism. Furthermore, in vivo and in vitro experiments both demonstrated that XSB suppressed oxidative stress and inflammatory response. Our results further revealed that the potential protective mechanism of XSB was closely associated with the DCN/PPARα/PGC-1α/P300 signaling pathway. Our findings provide novel mechanistic insights for HF treatment and a pharmacological basis for the therapeutic application of XSB against cardiovascular disorders
    corecore