49 research outputs found

    Comparison on Grain Quality Between Super Hybrid and Popular Inbred Rice Cultivars Under Two Nitrogen Management Practices

    Get PDF
    This study was conducted to determine the differences in grain quality traits between super hybrid and popular inbred rice cultivars grown under two nitrogen (N) management practices. Field experiments were done at the Experimental Farm of Guangxi University, Guangxi Province, China in early and late rice-growing seasons in 2014. Two representative super hybrid cultivars Liangyoupeijiu (LYPJ) and Y-liangyou 1 (YLY1) and a popular inbred rice cultivar Huanghuazhan (HHZ) were grown under fixed-time N management (FTNM) and site-specific N management (SSNM) practices in each season. Grain quality traits and N uptake were measured for each cultivar. LYPJ and YLY1 had higher milling efficiency, poorer appearance and palatability, and equal nutritional value than HHZ. The higher milling efficiency and poorer appearance in LYPJ and YLY1 were associated with their higher rice width compared with HHZ. Total N application rate was reduced by 15–20% under SSNM than under FTNM, whereas there was nearly no significant difference in grain quality between SSNM and FTNM. Our results suggest that (1) strategies for grain quality improvement in super hybrid rice should be focused on appearance and palatability, and (2) replacing FTNM with SSNM can reduce N input without sacrificing grain quality in rice production

    Slimming the Grain through Breeding Is a Practical Way to Reduce the Chalky Grain Rate of Middle-Season Hybrid Rice

    No full text
    The production of middle-season rice is an important part of agriculture in the Yangtze River basin of China. In recent years, the chalky grain rate of middle-season rice has decreased with the release of new cultivars. However, limited information is available on the factors responsible for this change in the chalky grain rate. This study evaluated the trends in the chalky grain rate and grain size traits of the new cultivars and the relationships between the chalky grain rate and grain size traits for middle-season hybrid rice in a province located in the middle reaches of the Yangtze River basin during 2006–2021. The results indicate that the recently reduced chalky grain rate of middle-season hybrid rice in the new cultivars is closely associated with a decrease in rice width, suggesting that it is feasible to reduce the chalky grain rate of middle-season hybrid rice by slimming the grain through breeding

    Biochar supplementation altered the expression of antioxidant proteins in rice leaf chloroplasts under high-temperature stress

    No full text
    Abstract In order to identify the key antioxidant defense systems used to cope with high-temperature stress in rice leaf chloroplasts following biochar supplementation, the present study compared the expression levels of chloroplast proteins related to antioxidant defense in high-temperature stressed rice leaves between without (C0) and with biochar supplementation (C40; 40 g biochar kg–1 soil). A total of sixteen differentially expressed antioxidant chloroplastic proteins were identified. Among them, three antioxidant enzyme proteins and eight thioredoxin proteins were 62–123% and 37–225% higher under the C40 treatment compared to C0, respectively. These results suggest that both antioxidant enzymes and the thioredoxin system are central to the biochar-mediated protection of rice leaves exposed to high-temperature stress

    Amylopectin content rather than amylose or protein content is critical to determining the starch digestion rate in high-amylose rice

    No full text
    The starch digestion properties of cooked rice are associated with the chemical compositions of the rice grain. However, limited information is available on the chemical composition governing starch digestion properties in high-amylose rice. To overcome this knowledge gap, correlation plot analysis and partial correlation analysis were utilized to assess the correlations between active digestion duration, total glucose production, and glucose production rate of cooked rice to amylose, amylopectin, and protein content of rice grains throughout 17 high-amylose varieties. The correlation plot analysis identified significant positive or negative linkages between total glucose production and the glucose production rate of cooked rice with grain amylose, amylopectin, and protein content. Nevertheless, partial correlation analysis only characterized a significant positive correlation between glucose production rate and grain amylopectin content. The findings of this study indicate that grain amylopectin content rather than grain amylose or protein content is critical for the determination of the rate of starch digestion in high-amylose rice

    Root Morphology Was Improved in a Late-Stage Vigor Super Rice Cultivar.

    No full text
    This study aimed to test the hypothesis that root morphology might be improved and consequently contributing to superior post-heading shoot growth and grain yield in late-stage vigor super rice. A pot experiment was carried out to compare yield attributes, shoot growth and physiological properties and root morphological traits between a late-stage vigor super rice cultivar (Y-liangyou 087) and an elite rice cultivar (Teyou 838). Grain yield and total shoot biomass were 7-9% higher in Y-liangyou 087 than in Teyou 838. Y-liangyou 087 had 60-64% higher post-heading shoot growth rate and biomass production than Teyou 838. Average relative chlorophyll concentration and net photosynthetic rate in flag leaves were 7-11% higher in Y-liangyou 087 than in Teyou 838 during heading to 25 days after heading. Y-liangyou 087 had 41% higher post-heading shoot N uptake but 17-25% lower root biomass and root-shoot ratio at heading and maturity than Teyou 838. Specific root length and length and surface area of fine roots were higher in Y-liangyou 087 than in Teyou 838 at heading and maturity by more than 15%. These results indicated that root-shoot relationships were well balanced during post-heading phase in the late-stage vigor super rice cultivar Y-liangyou 087 by improving root morphology including avoiding a too great root biomass and developing a large fine root system

    Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    No full text
    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata

    Yield performance of early-season rice cultivars grown in the late season of double-season crop production under machine-transplanted conditions.

    No full text
    In order to solve the problem of labor shortage in double-season rice production areas, machine transplanting, as opposed to manual transplanting, has become the more popular alternative method in rice cultivation. However, the most existing late rice cultivars are not suitable for machine double-season rice cultivation due to their long duration of growth. Therefore, based on the previous studies we chose early season rice cultivars to meet the needs of machine double-season rice cultivation. In this study, field experiments were conducted during the late season in 2015 and 2016 in Liuyang County, Hunan Province, China. Grain yield and yield-related traits were compared among eight early-season cultivars (Liangyou 6, Lingliangyou 211, Lingliangyou 268, Zhuliangyou 819, Xiangzaoxian 32, Xiangzaoxian 42, Zhongjiazao 17, and Zhongzao 39) in 2015 and four cultivars (Lingliangyou 268, Zhuliangyou 819, Zhongjiazao 17, and Zhongzao 39) in 2016, selected from the highest yielding cultivars grown in 2015. Lingliangyou 268 produced 8-44% higher grain yield than did the other cultivars except Zhongjiazao17 in 2015. This higher grain yield was driven by grain weight and aboveground biomass. The greater aboveground biomass in Lingliangyou 268 was mainly attributed to higher apparent radiation use efficiency (aboveground biomass/incident solar radiation). Our study suggests that improvement in grain weight and apparent radiation use efficiency were critical to the high grain yield of early-season rice cultivars grown in late season under machine transplanting conditions

    Grain filling of early-season rice cultivars grown under mechanical transplanting.

    No full text
    High yields of mechanized intensive rice-based cropping systems, e.g. double-season cropping using early- and late-season rice, are important to ensure national food security in China. However, few studies addressing the relationship between grain weight and grain yield of early-season rice under machine-transplanted conditions. A field experiment was conducted to determine the critical grain-filling characteristics and related physiological aspects that contribute to high grain weight in machine-transplanted early-season rice. The results showed that grain yield was significantly positively correlated with grain weight but not with panicles per m2, spikelets per panicle, and spikelet-filling percentage. Furthermore, this study demonstrated that there was a significant positive correlation between grain weight and mean grain-filling rate, which was significantly positively correlated with harvest index and grain cytokinin content. These results indicate that high grain-filling rate driven by good transport of assimilates to grains and strong grain sink strength is responsible for high grain weight in machine-transplanted early-season rice

    Morphological and physiological traits of seeds and seedlings in two rice cultivars with contrasting early vigor

    No full text
    Early vigor is important for crop establishment in rice. This study was conducted to determine the seed and seedling traits in relation to early vigor in rice. Laboratory tests and pot experiments were carried out in 2013 and 2014. Morphological and physiological traits of seeds and seedlings were compared between two contrasting rice cultivars, Yuxiangyouzhan with superior early vigor and Huanghuazhan with general early vigor. For seed traits, Yuxiangyouzhan had lower seed hull weight but higher seed amylose content, seed amylase activity, and plumule–radicle ratio than Huanghuazhan, and consequently, Yuxiangyouzhan had about 10% higher germination percentage and velocity and 37% longer plumule than Huanghuazhan. For seedling traits, leaf area, specific leaf weight, leaf chlorophyll and soluble protein contents, leaf net photosynthetic rate, and shoot–root ratio were higher in Yuxiangyouzhan than in Huanghuazhan, and as a result, seedling shoot biomass was 23–32% higher in Yuxiangyouzhan than in Huanghuazhan. These results indicate that Yuxiangyouzhan has both superior seed and seedling vigor. The former is attributed to the low mechanical strength of seed hull, high conversion efficiency of seed reserve, and high mobilization of seed reserve to plumule, while the latter is due to large leaf area, high leaf photosynthetic capacity, and high partitioning of dry matter to shoot. This study enriches the physiological understanding of superior early vigor in rice
    corecore