102,808 research outputs found

    High Dimensional Semiparametric Scale-Invariant Principal Component Analysis

    Full text link
    We propose a new high dimensional semiparametric principal component analysis (PCA) method, named Copula Component Analysis (COCA). The semiparametric model assumes that, after unspecified marginally monotone transformations, the distributions are multivariate Gaussian. COCA improves upon PCA and sparse PCA in three aspects: (i) It is robust to modeling assumptions; (ii) It is robust to outliers and data contamination; (iii) It is scale-invariant and yields more interpretable results. We prove that the COCA estimators obtain fast estimation rates and are feature selection consistent when the dimension is nearly exponentially large relative to the sample size. Careful experiments confirm that COCA outperforms sparse PCA on both synthetic and real-world datasets.Comment: Accepted in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPMAI

    ECA: High Dimensional Elliptical Component Analysis in non-Gaussian Distributions

    Full text link
    We present a robust alternative to principal component analysis (PCA) --- called elliptical component analysis (ECA) --- for analyzing high dimensional, elliptically distributed data. ECA estimates the eigenspace of the covariance matrix of the elliptical data. To cope with heavy-tailed elliptical distributions, a multivariate rank statistic is exploited. At the model-level, we consider two settings: either that the leading eigenvectors of the covariance matrix are non-sparse or that they are sparse. Methodologically, we propose ECA procedures for both non-sparse and sparse settings. Theoretically, we provide both non-asymptotic and asymptotic analyses quantifying the theoretical performances of ECA. In the non-sparse setting, we show that ECA's performance is highly related to the effective rank of the covariance matrix. In the sparse setting, the results are twofold: (i) We show that the sparse ECA estimator based on a combinatoric program attains the optimal rate of convergence; (ii) Based on some recent developments in estimating sparse leading eigenvectors, we show that a computationally efficient sparse ECA estimator attains the optimal rate of convergence under a suboptimal scaling.Comment: to appear in JASA (T&M
    • …
    corecore