62,734 research outputs found

    A Finite Exact Representation of Register Automata Configurations

    Full text link
    A register automaton is a finite automaton with finitely many registers ranging from an infinite alphabet. Since the valuations of registers are infinite, there are infinitely many configurations. We describe a technique to classify infinite register automata configurations into finitely many exact representative configurations. Using the finitary representation, we give an algorithm solving the reachability problem for register automata. We moreover define a computation tree logic for register automata and solve its model checking problem.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    First detection of GeV emission from an ultraluminous infrared galaxy: Arp 220 as seen with the Fermi Large Area Telescope

    Full text link
    Cosmic rays (CRs) in starburst galaxies produce high energy gamma-rays by colliding with the dense interstellar medium (ISM). Arp 220 is the nearest ultra luminous infrared galaxy (ULIRG) that has star-formation at extreme levels, so it has long been predicted to emit high-energy gamma-rays. However, no evidence of gamma-ray emission was found despite intense efforts of search. Here we report the discovery of high-energy gamma-ray emission above 200 MeV from Arp 220 at a confidence level of 6.3σ\sim 6.3 \sigma using 7.5 years of \textsl {Fermi} Large Area Telescope observations. The gamma-ray emission shows no significant variability over the observation period and it is consistent with the quasi-linear scaling relation between the gamma-ray luminosity and total infrared luminosity for star-forming galaxies, suggesting that these gamma-rays arise from CR interactions. As the high density medium of Arp 220 makes it an ideal CR calorimeter, the gamma-ray luminosity can be used to measure the efficiency of powering CRs by supernova (SN) remnants given a known supernova rate in Arp 220. We find that this efficiency is about 4.2±2.6%4.2\pm2.6\% for CRs above 1 GeV.Comment: Accepted by ApJL, 6 pages, 3 figure

    Extreme Candidates as the Beneficent Spoiler? Range Effect in the Plurality Voting System

    Full text link
    How does the entrance of radical candidates influence election results? Conventional wisdom suggests that extreme candidates merely split the votes. Based on the range effect theory in cognitive psychology, we hypothesize that the entrance of an extreme candidate reframes the endpoints of the ideological spectrum among available candidates, which makes the moderate one on the same side to be perceived by the voters as even more moderate. Through two survey experiments in the United States and Taiwan, we provide empirical support for range effect in the vote choice in the plurality system. The results imply that a mainstream party can, even without changing its own manifesto, benefit from the entrance of its radical counterpart; it explains why the mainstream party may choose cooperation strategically. Our findings also challenge the assumption in regression models that the perceived ideological positions of candidates are independent of each other

    Practical Distributed Control Synthesis

    Full text link
    Classic distributed control problems have an interesting dichotomy: they are either trivial or undecidable. If we allow the controllers to fully synchronize, then synthesis is trivial. In this case, controllers can effectively act as a single controller with complete information, resulting in a trivial control problem. But when we eliminate communication and restrict the supervisors to locally available information, the problem becomes undecidable. In this paper we argue in favor of a middle way. Communication is, in most applications, expensive, and should hence be minimized. We therefore study a solution that tries to communicate only scarcely and, while allowing communication in order to make joint decision, favors local decisions over joint decisions that require communication.Comment: In Proceedings INFINITY 2011, arXiv:1111.267

    Anomalous pressure behavior of tangential modes in single-wall carbon nanotubes

    Full text link
    Using the molecular dynamics simulations and the force constant model we have studied the Raman-active tangential modes (TMs) of a (10, 0) single-wall carbon nanotube (SWNT) under hydrostatic pressure. With increasing pressure, the atomic motions in the three TMs present obvious diversities. The pressure derivative of E1g, A1g, and E2g mode frequency shows an increased value (), a constant value (), and a negative value () above 5.3 GPa, respectively. The intrinsic characteristics of TMs consumedly help to understand the essence of the experimental T band of CNT. The anomalous pressure behavior of the TMs frequencies may be originated from the tube symmetry alteration from D10h to D2h then to C2h.Comment: 15 pages, 3 pages, submitted to Phys. Rev.
    corecore