1,058 research outputs found

    Harmonic phase-dispersion microscope with a Mach-Zehnder interferometer

    Get PDF
    Harmonic phase-dispersion microscopy (PDM) is a new imaging technique in which contrast is provided by differences in refractive index at two harmonically related wavelengths. We report a new configuration of the harmonic phase-dispersion microscope in a Mach-Zehnder geometry as an instrument for imaging biological samples. Several improvements on the earlier design are demonstrated, including a single-pass configuration and acousto-optic modulators for generating the heterodyne signals without mechanical arm scanning. We demonstrate quantitative phase-dispersion images of test structures and biological samples

    Sleep Induction by Mechanosensory Stimulation in Drosophila.

    Get PDF
    People tend to fall asleep when gently rocked or vibrated. Experimental studies have shown that rocking promotes sleep in humans and mice. However, the mechanisms underlying the phenomenon are not well understood. A habituation model proposes that habituation, a form of non-associative learning, mediates sleep induction by monotonous stimulation. Here, we show that gentle vibration promotes sleep in Drosophila in part through habituation. Vibration-induced sleep (VIS) leads to increased homeostatic sleep credit and reduced arousability, and can be suppressed by heightened arousal or reduced GABA signaling. Multiple mechanosensory organs mediate VIS, and the magnitude of VIS depends on vibration frequency and genetic background. Sleep induction improves over successive blocks of vibration. Furthermore, training with continuous vibration does not generalize to intermittent vibration, demonstrating stimulus specificity, a characteristic of habituation. Our findings suggest that habituation plays a significant role in sleep induction by vibration

    Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Get PDF
    Abstract: We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 / pm Hz , which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell

    Excitatory Motor Neurons are Local Central Pattern Generators in an Anatomically Compressed Motor Circuit for Reverse Locomotion [preprint]

    Get PDF
    Central pattern generators are cell- or network-driven oscillators that underlie motor rhythmicity. The existence and identity of C. elegans CPGs remain unknown. Through cell ablation, electrophysiology, and calcium imaging, we identified oscillators for reverse locomotion. We show that the cholinergic and excitatory class A motor neurons exhibit intrinsic and oscillatory activity, and such an activity can drive reverse locomotion without premotor interneurons. Regulation of their oscillatory activity, either through effecting an endogenous constituent of oscillation, the P/Q/N high voltage-activated calcium channel UNC-2, or, via dual regulation, inhibition and activation, by the descending premotor interneurons AVA, determines the propensity, velocity, and sustention of reverse locomotion. Thus, the reversal motor executors themselves serve as oscillators; regulation of their intrinsic activity controls the reversal motor state. These findings exemplify anatomic and functional compression: motor executors integrate the role of rhythm generation in a locomotor network that is constrained by small cell numbers
    corecore