11 research outputs found

    <i>BRCA1</i> promoter methylation and immunohistochemical analysis of BRCA1 in early-stage breast tumors.

    No full text
    <p>(A) DNA methylation status of the <i>BRCA1</i> promoter determined by methylation-specific PCR. M-labeled lanes represent PCR products amplified with methylation-specific primers (75 bp). U-labeled lanes indicate the presence of unmethylated genes (82 bp). Patients 1, 2, 3, 4, 6, and 7 show the presence of a PCR product in both reactions, indicating methylation of the <i>BRCA1</i> promoter region. Patients 5 shows unmethylated gene. Molecular weight marker used is a 100-bp ladder. (B) Representative corresponding images of immunohistochemical staining of BRCA1. Scale bars, 100 µm.</p

    Multivariate analysis of clinical factors and <i>BRCA1</i> promoter methylation in patients with early-stage breast cancer for overall survival and disease-free survival.

    No full text
    <p>Multivariate analysis of clinical factors and <i>BRCA1</i> promoter methylation in patients with early-stage breast cancer for overall survival and disease-free survival.</p

    Additional file 1: Figure S1. of Prognostic value of protein inhibitor of activated STAT3 in breast cancer patients receiving hormone therapy

    No full text
    Expression patterns of protein inhibitor of activated signal transducers and activators of transcription 3 (PIAS3) was detected in a panel of breast cancer cell lines. Total PIAS3 was determined by immunobotting in various breast cancer cell lines and one normal breast epithelial cell line. PIAS3 expression levels were normalized to the levels of the corresponding ÃŽË›-actin protein. The Image J software was used to compare the expression levels of total PIAS3. ER: estrogen receptor; HME: human mammary epithelial cells. (PDF 73 kb

    Additional file 2: of Altered monocyte differentiation and macrophage polarization patterns in patients with breast cancer

    No full text
    Relationship between macrophage polarization patterns and HER2 status in breast cancer. The percentages of peripheral blood macrophages with neither (a) the PM-2 K+CD14+ expression profile nor (b) the PM-2 K+CD14− expression profile were significantly different between patients with HER2-positive breast cancer and those with HER2-negative breast cancer. In the PM-2 K+CD14+ and PM-2 K+CD14− subsets, the percentages of M1-, M2a-, M2b-, and M2c-like macrophages were not significantly different between patients with HER2-positive breast cancer and those with HER2-negative breast cancer (c–j). (PDF 108 kb

    Additional file 1: of Altered monocyte differentiation and macrophage polarization patterns in patients with breast cancer

    No full text
    The gating strategy and histograms with the gating of all the antibodies by flow cytometry. Sample data from a patient with breast cancer are shown. Live cells were gated on a forward scatter (FSC)/side scatter (SSC) plot (A). These cells were then further gated to determine CD3−, CD19− (B), PM-2 K+ macrophages (C). Macrophages were further gated to determine CCR7+CD86+ M1-like macrophages, CCR7−CXCR1+ M2a-like macrophages, CCR7−CD86+ M2b-like macrophages, and CCR7−CCR2+ M2c-like macrophages in PM-2 K+CD14+ (D) and PM-2 K+CD14− (E) groups. (PDF 46 kb

    Multi-center study on patient selection for and the oncologic safety of intraoperative radiotherapy (IORT) with the Xoft Axxent® eBx® System for the management of early stage breast cancer in Taiwan

    No full text
    <div><p>Background</p><p>In this multi-center study, we report the patient selection criteria for and preliminary oncologic outcomes associated with intraoperative radiotherapy (IORT) delivered by the Xoft Axxent® eBx® system for early-stage breast cancer in Taiwan.</p><p>Methods</p><p>Patients with early breast cancer in Taiwan received breast conserving surgery and received IORT with Xoft Axxent® eBx® System during 2013–2015 was search from database of Taiwan IORT study cooperative group (T-IORTSCG). Patients’ clinicopathologic characteristics and early post-operative results were collected and reported.</p><p>Results</p><p>During the study period, 26 hospitals in Taiwan performed a total of 261 Xoft IORT procedures for breast cancer. The mean age of them was 52.9 ± 9.8 years (37–72), and tumor size was 1.5 ± 0.8 cm (0.1–4.2 cm) for invasive cancer and 1.2 ± 0.8 cm (range, 0.2–3.0 cm) for ductal carcinoma in situ (DCIS) lesions. Lymph node metastasis was found in 6 (2.3%) patients. The patients received IORT in Taiwan differed markedly from those used in the ELIOT and TARGIT-A studies. Specifically, patients selected for IORT in Taiwan tended to be younger, their tumors tended to be larger and the prevalence of lymph node metastasis tended to be lower. Among these 261 patients, 8 (3.1%) patients required whole breast radiotherapy. During a mean follow up of 15.6 months, locoregional recurrence was observed in 2 (0.8%) patients.</p><p>Conclusion</p><p>In real world experience, patients received IORT differed quite significantly with criteria formulated by trials. The preliminary results of IORT in Taiwan showed it is well acceptable by patients and clinicians.</p></div

    The development and application of Xoft IORT system in Taiwan.

    No full text
    <p>(a) The development and application of Xoft IORT system in Taiwan from 2013–2015. The T-IORTSCG comprises members from major IORT centers in Taiwan, and included 5 centers in 2013, 18 in 2014, and 26 in 2015. The number of IORT performed per year and the cumulative number of IORT performed in the past 3 years were provided. (b) Illustration of pre- and post-operative breast appearance of patients received conventional radiotherapy. (c) Illustration of pre- and post-operative breast appearance of patients received intra-operative radiotherapy.</p

    Procedures for patients received intra-operative radiotherapy with the Xoft Axxent® eBx® delivery system.

    No full text
    <p>(a) The eBX system consists of a balloon applicator, a 50-kV source, and a mobile, highly portable controller unit that can be easily transported to any treatment room or standard operating room. (b) The chest wall shield was placed temporarily into the cavity for the duration of radiation treatment to protect the underlying heart, ribs, and lungs from scattered radiation. (c) A balloon-like cavity evaluation device was then placed through a lateral stab wound incision or directly into the wound and filled to a desired volume of 30–75 cc, based on the radiation treatment plan. (d) Once the cavity volume was determined, an appropriate size of eBX balloon was opened up and inserted into the cavity. Multiple retention-type sutures were used to maintain the balloon-to-tissue apposition and to temporarily close the lumpectomy cavity around the balloon. (e) Balloon-to-tissue conformity was assessed by intraoperative ultrasonography to ensure that the target volume did not contain air or fluid. Intraoperative ultrasonography was then used to confirm that there was a distance of at least 1 cm between the balloon and skin to reduce the risk of radionecrosis. (f) A FlexiShieldTM (FS; Xoft, Inc., San Jose, CA) was placed over the breast to minimize transmission of radiation to the patient and hospital staff. (g) The radiation source was inserted into the balloon and radiation therapy was initiated. A planned dose of 20 Gy to the balloon surface was delivered over an average of 8–15 mins. (h) During treatment, the surgeon, radiation oncologists, anesthesiologist, and other essential operating room personnel wore standard lead aprons and /or stood behind a portable radiation shield in the operating suite. The medical staffs could also leave the operation room and observe the monitors during the Xoft IORT treatment.</p
    corecore