25,888 research outputs found

    Topological semimetals with Riemann surface states

    Get PDF
    Riemann surfaces are geometric constructions in complex analysis that may represent multi-valued holomorphic functions using multiple sheets of the complex plane. We show that the energy dispersion of surface states in topological semimetals can be represented by Riemann surfaces generated by holomorphic functions in the two-dimensional momentum space, whose constant height contours correspond to Fermi arcs. This correspondence is demonstrated in the recently discovered Weyl semimetals and leads us to predict new types of topological semimetals, whose surface states are represented by double- and quad-helicoid Riemann surfaces. The intersection of multiple helicoids, or the branch cut of the generating function, appears on high-symmetry lines in the surface Brillouin zone, where surface states are guaranteed to be doubly degenerate by a glide reflection symmetry. We predict the heterostructure superlattice [(SrIrO3_3)2_2(CaIrO3_3)2_2] to be a topological semimetal with double-helicoid Riemann surface states.Comment: Four pages, four figures and two pages of appendice

    Controllable Goos-H\"{a}nchen shifts and spin beam splitter for ballistic electrons in a parabolic quantum well under a uniform magnetic field

    Full text link
    The quantum Goos-H\"{a}nchen shift for ballistic electrons is investigated in a parabolic potential well under a uniform vertical magnetic field. It is found that the Goos-H\"{a}nchen shift can be negative as well as positive, and becomes zero at transmission resonances. The beam shift depends not only on the incident energy and incidence angle, but also on the magnetic field and Landau quantum number. Based on these phenomena, we propose an alternative way to realize the spin beam splitter in the proposed spintronic device, which can completely separate spin-up and spin-down electron beams by negative and positive Goos-H\"{a}nchen shifts.Comment: 6 pages, 6 figure

    Topological magnetoplasmon

    Get PDF
    Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle-hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near zero frequency, is topologically analogous to the 2D topological p+\Ii p superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheries of a hollow disk. These findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems.Comment: 12 pages, 6 figures, 1 supporting materia

    Renewable Composite Quantile Method and Algorithm for Nonparametric Models with Streaming Data

    Full text link
    We are interested in renewable estimations and algorithms for nonparametric models with streaming data. In our method, the nonparametric function of interest is expressed through a functional depending on a weight function and a conditional distribution function (CDF). The CDF is estimated by renewable kernel estimations combined with function interpolations, based on which we propose the method of renewable weighted composite quantile regression (WCQR). Then we fully use the model structure and obtain new selectors for the weight function, such that the WCQR can achieve asymptotic unbiasness when estimating specific functions in the model. We also propose practical bandwidth selectors for streaming data and find the optimal weight function minimizing the asymptotic variance. The asymptotical results show that our estimator is almost equivalent to the oracle estimator obtained from the entire data together. Besides, our method also enjoys adaptiveness to error distributions, robustness to outliers, and efficiency in both estimation and computation. Simulation studies and real data analyses further confirm our theoretical findings.Comment: 24 pages, 0 figure

    Diversified Texture Synthesis with Feed-forward Networks

    Full text link
    Recent progresses on deep discriminative and generative modeling have shown promising results on texture synthesis. However, existing feed-forward based methods trade off generality for efficiency, which suffer from many issues, such as shortage of generality (i.e., build one network per texture), lack of diversity (i.e., always produce visually identical output) and suboptimality (i.e., generate less satisfying visual effects). In this work, we focus on solving these issues for improved texture synthesis. We propose a deep generative feed-forward network which enables efficient synthesis of multiple textures within one single network and meaningful interpolation between them. Meanwhile, a suite of important techniques are introduced to achieve better convergence and diversity. With extensive experiments, we demonstrate the effectiveness of the proposed model and techniques for synthesizing a large number of textures and show its applications with the stylization.Comment: accepted by CVPR201
    • …
    corecore