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Topological magnetoplasmon
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Classical wave fields are real-valued, ensuring the wave states at opposite frequencies

and momenta to be inherently identical. Such a particle–hole symmetry can open up new

possibilities for topological phenomena in classical systems. Here we show that the

historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states

and gapless one-way edge states near-zero frequency, is topologically analogous to the

2D topological pþ ip superconductor with chiral Majorana edge states and zero modes. We

further predict a new type of one-way edge magnetoplasmon at the interface of opposite

magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the

peripheries of a hollow disk. These findings can be readily verified in experiment, and can

greatly enrich the topological phases in bosonic and classical systems.
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S
ince the introduction of chiral edge states from two-
dimensional (2D) quantum Hall systems into photonic
systems1–8, the investigation of band topology has been

actively extended into many other 2D or three-dimensional (3D)
bosonic systems9,10, including phonon11–15, magnon16,
exciton17,18 and polariton19. Up to now, topological phases of
2D plasmon have not been identified, in spite of some related
discussion20–26 and a recent proposal of Weyl plasmon27.
Besides, the previous lines of work mainly focus on finite
frequencies. Little attention has been paid to near-zero
frequencies, where new symmetries and new topological states
may emerge (as elaborated below).

Plasmon is a unique type of bosonic excitations.
Microscopically, it consists of collective motion of electron–hole
pairs in a Coulomb interaction electron gas, whereas
macroscopically it appears as coherent electron-density oscilla-
tions. Under most circumstances, it can be well described by
classical density (and velocity) fields on the hydrodynamic level.
These fields, like all other classical fields, are intrinsically real-
valued and respect an unbreakable particle–hole symmetry. For a
particle–hole symmetric system, its Hamiltonian H transforms
under an antiunitary particle–hole conjugate operation C via
C� 1HC ¼ �H. (Here C2 ¼ þ 1 for bosons.) This property
ensures a symmetric spectrum o qð Þ with respect to zero frequency,
o qð Þ ¼ �o � qð Þ, in which q is the wavevector. The associated
wave fields are thus superpositions of complex-conjugate
pairs, F r; tð Þ ¼

R
dq½F qeþ i q�r� o qð Þj jtð Þ þF�qe� i q�r� o qð Þj jtð Þ�. The

spin-0 real-scalar field governed by the Klein–Gordon equation
and the spin-1 real-vector field governed by Maxwell’s equations
also share the same feature.

Particle–hole symmetry greatly expands the classification
of topological phases, according to the results of
tenfold classification28,29. For example, the 2D quantum
Hall phase belongs to the class-A in 2D with broken
time-reversal symmetry T . The Su–Schrieffer–Heeger model
and the recently studied phonon zero modes12,15 belong
to the class-BDI in one-dimension (1D) with particle–hole
symmetry C2 ¼ þ 1 and time-reversal symmetry T 2 ¼ þ 1.
However, the class-D 2D topological phase with C2 ¼ þ 1 and
broken T has so far only been proposed in pþ ip
superconductors30, which carry chiral Majorana edge states and
Majorana zero modes.

In this work, we show that the historically studied
2D magnetoplasmon (MP)31–41 belongs to the class-D 2D
topological phase with unbreakable C and broken T . It is
governed by three-component linear equations carrying a similar
structure as that of the two-band Bogoliubov–de Gennes (BdG)
equations of the pþ ip topological superconductor30,42.
It contains a gapped bulk spectrum around zero frequency, and
possesses gapless topological edge states and zero-frequency
bound states (zero modes). Many properties of pþ ip
superconductor can find their analogy in 2D MP. Therefore,
2D MP provides the first realized example of class-D in the
10-class table28,29. The experimentally observed edge MP states
dated back to 1985 (ref. 37) are in fact topologically protected,
analogous to the 1D chiral Majorana edge states. Some
simulations of Majorana-like states in photonics have been
reported43–47; however, they only appear at finite frequencies
around which the particle–hole symmetry does not rigorously
hold, unless using high nonlinearity48. In addition, we are able to
derive non-zero Chern numbers adhering to the band topology of
2D MP. On the basis of this, we are able to predict a new type of
one-way edge MP states on the boundary between opposite
magnetic domains, and the existence of MP zero modes on a
hollow disk. Our prediction can be experimentally verified
in any 2D electron gas (2DEG) systems, such as charged

liquid-helium surface33, semiconductor junctions34,38,49 and
graphene50,51.

Results
Governing equations. We consider a 2DEG confined in the z¼ 0
and r¼ xexþ yey plane. The dynamics of MPs are governed by
the linearized charge-continuity equation and the Lorentz force
equation52,53. In the frequency domain, they are

� ior r; oð Þ ¼ �rr � j r; oð Þ; ð1Þ

� ioj r; oð Þ ¼ a rð ÞE r; oð Þ�oc rð Þj r; oð Þ�ez; ð2Þ
where r r; oð Þ is the variation of 2D electron-density off
equilibrium and j r; oð Þ is the induced 2D current density.
a rð Þ is a space-dependent coefficient that gives a 2D local
longitudinal conductivity, s r; oð Þ ¼ ia rð Þ=o. ocðrÞ is the
cyclotron frequency from a perpendicularly applied static
magnetic field, B0(r)¼B0(r)ez. For the massive electrons chosen
for our demonstration in this paper, a rð Þ ¼ e2n0 rð Þ

m�
and

oc rð Þ ¼ eB0 rð Þ
m�c

, in which n0(r) is the equilibrium electron-density
distribution, m* is the effective mass and c is the speed of
light32,54.

E r;oð Þ in equation 2 is the electric field evaluated within the
z¼ 0 plane. It is generally a nonlocal function of the 2D current
density, E r; oð Þ ¼

R
dr0 K r; r0; oð Þ � j r0; oð Þ, where K r; r0; oð Þ

is an integration kernel determined by Maxwell’s equations.
For a model system shown in Fig. 1a, and in the nonretarded
limit (E solely comes from the Coulomb interaction)52,53, the
Fourier transformed field–current relation can be attested to be
(see Supplementary Note 1)

Ex q; oð Þ
Ey q; oð Þ

� �
¼ 2p

ioqx qð Þ
q2

x qxqy

qxqy q2
y

� �
jx q; oð Þ
jy q; oð Þ

� �
: ð3Þ

Here q¼ |q|, and x qð Þ ¼ 1
2 EA coth qdAð Þþ EB coth qdBð Þf g is a

q-dependent screening function54, in which dA and dB are the
thicknesses, and EA and EB are the permittivities of the dielectrics
on the two sides of 2DEG. A generalization of equation 3 can be
made to include photon retardation (plasmon becomes plasmon
polariton)32,55,56 (see Supplementary Note 2). The Drude loss by
electron–phonon collision can be included in this formulation by
introducing a finite lifetime in equation 2 (ref. 54).

Bulk Hamiltonian and bulk states. We analytically solve for the
case of homogeneous bulk plasmons, where n0(r), B0(r), a rð Þ and
oc rð Þ are all constants. B0 and oc can be positive or negative,
depending on the direction of the magnetic field to be parallel or
antiparallel to ez. We find that equations 1–3 can be casted into a
Hermitian eigenvalue problem. The Hamiltonian H is block-
diagonalized in the momentum space, acting on a generalized
current density vector J,

oJ q; oð Þ ¼ H qð ÞJ q; oð Þ; J q; oð Þ �
jR q; oð Þ
jD q; oð Þ
jL q; oð Þ

0
@

1
A; ð4Þ

where jL;R q; oð Þ � 1ffiffi
2
p fjx q; oð Þ � ijy q; oð Þg are the left- and

right-handed chiral components of current density, and

jD q; oð Þ �
ffiffiffiffiffiffiffiffi
2pa

qx qð Þ

q
r q; oð Þ � op qð Þ

q r q; oð Þ is a generalized

density component.

op qð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
2paq
x qð Þ

s
!

upq; for small qð Þ;ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pa

EA þ EB
q

q
; for large qð Þ;

(
ð5Þ

is the dispersion relation of conventional 2D bulk plasmon

without a magnetic field. up ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4padAdB
EAdB þ EBdA

q
is the effective
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plasmon velocity originated from the screening of Coulomb
interaction at long wavelengths by surrounding metals
(see Fig. 1a). jD q; oð Þ asymptotically equals upr q; oð Þ at long
wavelengths.

The bulk Hamiltonian H qð Þ and its long-wavelength limit
read

H qð Þ ¼

þoc
op qð Þ

q
qx � iqyffiffi

2
p 0

op qð Þ
q

qx þ iqyffiffi
2
p 0

op qð Þ
q

qx � iqyffiffi
2
p

0
op qð Þ

q
qx þ iqyffiffi

2
p �oc

0
BBBBB@

1
CCCCCA

!q!0

þoc
up qx � iqyð Þffiffi

2
p 0

up qx þ iqyð Þffiffi
2
p 0

up qx � iqyð Þffiffi
2
p

0
up qx þ iqyð Þffiffi

2
p �oc

0
BBBBBBB@

1
CCCCCCCA
:

ð6Þ

Strikingly, this long-wavelength three-band H qð Þ has a very
similar structure to that of the Bogoliubov–de Gennes hamilto-
nian of a 2D pþ ip topological superconductor42, which has two
bulk bands. Here the odd number of bands is crucial for the
topological consequences shown below. For an even number of
bosonic bulk bands, it has been proved that the summed Chern
number is always zero for the bands below or above the zero
frequency16.

We can define the antiunitary particle–hole operation C and
the antiunitary time-reversal operation T here,

C ¼
0 0 1

0 1 0

1 0 0

0
B@

1
CAK

�������
q!� q

; T ¼
0 0 � 1

0 1 0

� 1 0 0

0
B@

1
CAK

�������
q!� q

ð7Þ

where K is the complex-conjugate operator and j q!� q stands
for a momentum flipping. As can be checked, C acts as the
complex conjugation for all the field components jx, jy and jD,
while T additionally reverses the sign for jx and jy (refer to
Methods: Cartesian representation). Our Hamiltonian has C

symmetry,

CH qð ÞC� 1 ¼ �H � qð Þ; ð8Þ

but broken T symmetry by the non-zero oc.
The calculated homogeneous bulk spectra, plotted in Fig. 1b,c,

are

o� qð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þo2
p qð Þ

q
and o0 qð Þ ¼ 0: ð9Þ

The corresponding (unnormalized) wavefunctions are

J� qð Þ /

qx � iqyffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þo2
p qð Þ

q
� oc

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

x þ q2
y

� �
o2

p qð Þ
r

qx þ iqyffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þo2
p qð Þ

q
	 oc

� �

0
BBBBB@

1
CCCCCA /

q!0
1
2 � 1

2
0

1
2 	 1

2

0
@

1
A;

ð10Þ

J0 qð Þ /

� qx � iqyffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
o2

p qð Þ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

xþ q2
y

q
oc

þ qx þ iqyffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffi
o2

p qð Þ
q

0
BBB@

1
CCCA /q!0

0
1
0

0
@

1
A: ð11Þ

The positive- and negative-frequency bands are gapped by oc.
The zero-frequency band represents purely rotational currents
(rr � j¼ 0, rr� ja0) balanced by static charge density
distribution.

It is worthwhile to point out that the 2D bulk plasmon
discussed here is distinctively different from the surface plasmon
(or surface plasmon polariton) in a 3D boundary (see
Supplementary Note 3).

Chern number on an infinite momentum plane. Unlike the
regular lattice geometries whose Brillouin zone is a torus, our
system is invariant under continuous translation, where the
unbounded wavevector plane can be mapped on a Riemann
sphere30,57. As long as the Berry curvature decays faster than q� 2

as q-N, the Berry phase around the north pole (q¼N) of
Riemann sphere is zero and the Chern number C is quantized57.
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Figure 1 | Model system and analytically calculated homogeneous bulk spectra. (a) Schematics of the structure. (The presence of metal plates and

dielectrics permits a general theoretical treatment but is not essential to the topological behaviours of 2D MP). (b) No magnetic field is present. The two

circles connected by a dashed line represent the particle–hole symmetry of the dispersion curves. (c) A uniform magnetic field is applied along the positive

z direction. Different branches carry different Chern numbers. The negative-frequency branch reflects the redundant degrees of freedom of the real-valued

classical field and so is shaded. Here oc ¼ o�, where o� is a characteristic frequency defined to normalize the frequencies (see Methods: Theoretical

model).
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For our 2D MP, we can verify this analytically,

C� ¼
1

2p

Z
dSq � rq�

J� qð Þ½ �y � irq
� 	

J� qð Þ
J� qð Þ½ �yJ� qð Þ

( )

¼
Z

qdq
1
q
@q

	ocffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þo2
p qð Þ

q
2
4

3
5

8<
:

9=
;

¼ � sgn ocð Þ;

ð12Þ

C0 ¼ 0; ð13Þ
where dSq is the momentum–space surface element, and the term
in the curly bracket is the Berry curvature. Since the Berry
curvature changes its sign under the particle–hole symmetry, the
positive and negative-frequency bands must have opposite Chern
numbers, and the zero-frequency band, with odd Berry curvature,
must have zero Chern number.

Majorana-type one-way edge states. We are able to calculate the
analytical edge solutions in the long-wavelength limit q-0, and
numerical edge solutions for unrestricted wavelengths, as plotted
in Fig. 2. When q-0, the Hamiltonian in equation 6 becomes
local, allowing us to replace qx and qy with the operators � i@x

and � i@y and to solve for the edge states by matching boundary
conditions25,53. We consider a 1D edge situated at x¼ 0 caused
by a discontinuity either in n0(x) (Configuration-I) or in B0(x)
(Configuration-II).

In Configuration-I as shown in Fig. 2a, we let the x40 region
be filled with 2DEG, up x40ð Þ ¼ up

� 	
, while the xo0 region be

vacuum, up xo0ð Þ ¼ 0
� 	

and the magnetic field be uniformly
applied parallel to ez, oc xð Þ ¼ oc40ð Þ. Since we know that the
change of Chern number across the edge is DC¼±1, there must
be a single topological edge state present in this configuration. We
look for solutions that behave like 
 e�kxþ iqyy� iot , qx ¼ ikð Þ, in
the x40 region, where k40 is an evanescent wavenumber. The

boundary condition is jx j x¼0þ ¼ 0, meaning that the component
of the current normal to the edge must vanish. Therefore, the

edge solutions have to satisfy qyoc ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c þ u2
p q2

y � k2
� �r

,

whose right-hand side is always positive. Since we have chosen
oc ¼ ocj j40, qy must be positive too. The edge state is hence
one-way propagating. (We discard the unphysical solution k ¼ qy

that yields a null wavefunction.) The physical solution is k ¼ oc
up

,

which gives an edge state spectrum,

o 1ð Þ
edge qy
� 	

¼ upqy; qy � 0
� 	

: ð14Þ

This is a gapless state running across the zero-frequency band as
shown in Fig. 2c. It is a bosonic analogue to the chiral Majorana
edge states in the topological superconductor. Its wavefunction is

J 1ð Þ
edge x; qy
� 	

/
� iffiffi

2
p

1
þ iffiffi

2
p

0
@

1
Ae�

oc
up

xþ iqyy
; x40ð Þ: ð15Þ

The zero-frequency edge state at qy¼ 0 has the same finite decay
length k ¼ oc

up
and is well localized at the edge, despite being

degenerate with the flat middle band.
In Configuration-II as shown in Fig. 2b, we let the 2DEG

have a constant electron density throughout the whole
space, up xð Þ ¼ up, but the magnetic field have opposite signs
in the two regions (oc xð Þ ¼ þ ocj j40 for x40 and
oc xð Þ ¼ � ocj jo0 for xo0). This is a novel configuration with
DC¼±2 across the edge, and permits two topological edge
states. The boundary conditions are jx j x¼0� ¼ jx j x¼0þ and
jD j x¼0� ¼ jD j x¼0þ , meaning that both the normal current
and density must be continuous across the edge. In our
long-wavelength approximation, the first edge solution has the
same spectrum and wavefunction as those of Configuration-I,
except for a symmetric extension of the wavefunction into the
xo0 region (compare the plots of r and jy in red in Fig. 2a,b).
The second edge solution satisfies k ¼ � qy , and so qy must be

� / �* � / �*
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Figure 2 | Schematics of the system configurations and numerically calculated bulk and edge spectra. (a) Configuration-I: A 2DEG is in contact with

vacuum under a uniform magnetic field along the positive z direction. (b) Configuration-II: A 2DEG is uniformly filled in the whole space but two opposite

magnetic fields are applied along the positive and negative z direction. The edge state profiles of density and current components are shown as well. For

Configuration-II, the two edge states have opposite symmetries. (c) The spectra corresponding to Configuration-I. (d) The spectra corresponding to

Configuration-II. The negative-frequency part reflects the redundant degrees of freedom of the real-valued classical field and so is shaded.
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negative to ensure k positive. This edge state is also one-way with
a spectrum,

o 2ð Þ
edge qy
� 	

¼ ocj j; qy � 0
� 	

; ð16Þ

as shown in Fig. 2d. Its wavefunction is

J 2ð Þ
edge x; qy
� 	

/
1
2 � 1

2
0

1
2 	 1

2

0
@

1
Ae� qyxþ iqyy; x_0ð Þ: ð17Þ

It is antisymmetric for jy as plotted in green in Fig. 2b. The
antisymmetry plus the continuity condition for jD here make the
density oscillations vanish identically; therefore, the second
edge state carries only current oscillations about the magnetic
domain wall.

Figure 2c,d gives our numerically calculated bulk and edge
spectra that are not restricted by the small-q local approximation
(refer to Methods: Numerical scheme). When q is small, the
numerical results accurately agree with our analytical derivation
above. When q is large, the first edge dispersion asymptotically
approaches the bulk bands and eventually connects to them at
q-N. The second edge dispersion drops gradually towards the
zero-frequency bulk band and connects to it at
q-N. It does show a (tiny) positive group velocity indicating
the correct chiral direction, in spite of its negative phase velocity
(refer to Fig. 2b,d). Physically though, the plasmon picture breaks
down in the large-q regime, where electron–hole pair production
takes place.

Besides, we should note that there exists a non-topological
gapped edge state in Configuration-I (see the blue curve in

Fig. 2c), which is consistent with the literature54. At long
wavelengths q-0, this state resembles a bulk state bearing an
excitation gap of oc. Its edge confinement shows up only at short
wavelengths. As elaborated below, under a parameter evolution
from Configuration-I to II, this edge state evolves, remarkably,
into the second gapless topological edge state in Configuration-II.

One-way propagation of edge states. Owing to the topological
protection, one-way edge states are immune to backscattering
from a random defect. In Fig. 3, we display two snapshots from
our real-time simulation. Edge states are excited by a point source
oscillating at a frequency of 1

2 oc within the bulk gap. The
generated waves propagate only towards the right. A sharp zigzag
defect has been purposely inserted into the route of propagation.
The waves then exactly follow the edge profile and insist on
propagating forward without undergoing any backscattering.
The slightly visible fluctuation to the left of the point source is
completely local (non-propagating). It is caused by the unique
long-range Coulomb interaction in this system, different from the
more familiar photonic and acoustic systems.

Figure 3a corresponds to the traditional Configuration-I, where
the physical edge is formed by the density termination of 2DEG at
vacuum. Although the one-way nature in this configuration is
known historically, its absolute robustness due to the topological
protection is less known and is manifested here.

Figure 3b corresponds to our new Configuration-II. Only the
first edge state classified in Fig. 2 is excited here; the second edge
state has an energy too close to the band edge oc and hence is not
excited here. On the basis of our argument on topology above,
Configuration-II permits protected one-way edge states on a
magnetic domain boundary even if the 2DEG may be
homogeneous. Figure 3b vividly demonstrates this scenario.
Furthermore, it shows the perfect immunization to backscattering
when the two magnetic domains drastically penetrate each other.

Evolution of edge states. We find that the adiabatic mode
evolution of the MP edge states described by a three-band model
here is rather different from that in 2D topological insulators
or superconductors, which can be commonly described by a
two-band or four-band model. The zero-frequency bulk band
here plays a critical role for the appearance and disappearance of
the topological edge states. We have investigated the evolution
corresponding to the aforementioned two configurations shown
in Fig. 2.

We first study the interaction between two topological edge
states propagating along the opposite directions on two 2DEG
edges in the same magnetic field. The result is shown in Fig. 4a.
When we gradually narrow the spacer, we let the equilibrium
density in the spacer to gradually change from 0 to the bulk
density n0. This allows the two topological edge states to couple
and end up with a bulk configuration. Instead of opening a gap
and entering the top band (which would happen in the
conventional two-band system), the two topological edge states
here (marked in red) fall down into the flat middle band. In
addition, there are two non-topological edge states (marked in
blue, and refer to Fig. 2c) in this configuration. They move
completely into the bulk during this process.

We then study the interaction between two topological edge
states propagating along the same direction on the two 2DEG
edges under opposite magnetic fields. The result is shown in
Fig. 4b. When we gradually narrow the spacer, we find that one of
the edge states (marked in red) goes slightly upwards, while the
other falls downwards into the flat middle band. In the
meanwhile, one of the non-topological edge states (marked in
blue) detaches from the top band, continuously bends downwards

Domain boundary

Density boundary

b

a Configuration-I: single domain

Configuration-II: opposite domains

+1

−1

0

Point source

Point source

Vacuum

2DEG

2DEG

2DEG

x y

z

x y
z

Figure 3 | Snapshots of one-way propagating topological edge states

immune to backscattering at a sharp zigzag defect. Here the cyclotron

frequency oc ¼ 4o�, which corresponds to B0¼0.9 T. The driving

frequency for the point source is 1
2 oc, which corresponds to f¼ 12.7 GHz.

(Refer to Methods: Theoretical model). (a) Configuration-I: a 2DEG is in

contact with vacuum under a single-domain magnetic field.

(b) Configuration-II: a 2DEG is uniformly filled in the whole space under an

opposite-domain magnetic field. Note that the profile is plotted for the

electric scalar potential, which is non-zero in the vacuum region. The

difference between a and b on the wavelengths is consistent with the

slightly different dispersion slope of the topological edge states between

Configuration-I and II. (See online Supplementary Movies 1 and 2 for real-

time evolution).
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until it reaches the frequency oc, where it transits into the second
topological edge state (marked in green). According to our
previous argument, this edge state connects to the middle band at
the momentum infinity. At all times, there are two gapless edge
states. This is consistent with the preserved difference of Chern
numbers (DC¼±2) between the left part and right part of
2DEG.

MP on a hollow disk. For infinitely long edges as discussed
above, the first topological edge state when ky-0 merges into the
zero-frequency middle band, as can be seen in Fig. 2c,d. Impor-
tantly, we want to quest whether such zero-frequency modes
preserve (not being gapped) when we wrap a long edge into a
small circle. We want to investigate the behaviours of 2D MP on,
for instance, a hollow disk geometry depicted in Fig. 5a.

We write the low-energy long-wavelength Hamiltonian in real-
space polar coordinates and still use the chiral representation
jL;R r; f; oð Þ � 1ffiffi

2
p fjrðr; f; oÞ � ijf r; f; oð Þge� if,

jD r; f; oð Þ � upr r; f; oð Þ. The eigen-equation is

þoc
upe� ij

i
ffiffi
2
p @r � i

r @f
� 	

0

upeþ if

i
ffiffi
2
p @r þ i

r @f
� 	

0 upe� if

i
ffiffi
2
p @r � i

r @f
� 	

0 upeþ if

i
ffiffi
2
p @r þ i

r @f
� 	

�oc

0
BBB@

1
CCCA

jR r; f; oð Þ
jD r; f; oð Þ
jL r; f; oð Þ

0
B@

1
CA

¼ o

jR r; f; oð Þ
jD r; f; oð Þ
jL r; f; oð Þ

0
B@

1
CA: ð18Þ

The azimuthal symmetry ensures the eigensolutions of jr, jf
and jD to pick up a common factor einf, where n is the integer of
discretized angular momentum. This low-energy long-wavelength
problem can be solved semi-analytically. In all situations, jr and jf

are derived quantities from jD,

jr r; n; oð Þ ¼ � iup

o2�o2
c

oc
n
r
þo@r

h i
jD r; n; oð Þ; ð19Þ

jf r; n; oð Þ ¼ up

o2�o2
c

o
n
r
þoc@r

h i
jD r; n; oð Þ: ð20Þ

Depending on the energy to be above or below the bandgap,
we have

jD r; n; oð Þ ¼
AnJn krrð ÞþBnYn krrð Þ; o2oo2

c

� 	
;

CnKn krrð Þ; 0oo2oo2
c

� 	
:

8<
: ð21Þ

where kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2�o2

c

p
=up, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

c �o2
p

=up, Jn krrð Þ and
Yn krrð Þ are the n-th order Bessel and Neumann functions, and
Kn krrð Þ is the modified Bessel function. An, Bn and Cn are
coefficients. The no-normal-current boundary condition

qy qy qy

qy qy qy

� � �

� � �

a

b

Figure 4 | Evolution of the edge states when two pieces of 2DEG are brought into contact with each other. The density spacer is gradually filled to the

bulk value as the distance shrinks to zero. (a) The magnetic field is uniformly applied along the positive z direction in the whole space. (b) The magnetic

field has opposite directions between the left part and right part of 2DEG.
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Figure 5 | Topological zero mode. (a) Illustration of a hollow disk geometry

and zero-mode profile attached to the inner circular edge. (b) Spectrum of

bulk states and edge states versus the discrete angular momentum

n ¼ 0; � 1; � 2; . . . .
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jr r; n; oð Þ j r¼a¼ 0 determines the allowed eigenfrequencies o
for every given n. In this approximate model, the solutions above
the bandgap o2oo2

c are all continuous bulk-like and within the
bandgap 0oo2oo2

c are all discrete edge-like, as shown in Fig. 5b.

Majorana-type bound state: zero mode. We are particularly
interested in the limit o! 0. According to equations 19 and 21,
the boundary condition can be satisfied if and only if n ¼ 0,
which completely annihilates the radial current, jr(r, 0, 0)¼ 0. The
zero-mode profile is given by

jD r; 0; 0ð Þ ¼ A0K0
ocj j
up

r

� �

 e�

ocj j
up

rffiffiffiffiffiffiffiffiffi
ocj j
up

r
q ; ð22Þ

jf r; 0; 0ð Þ ¼ A0sgn ocð ÞK1
ocj j
up

r

� �

 sgn ocð Þe�

ocj j
vp

rffiffiffiffiffiffiffiffiffi
ocj j
up

r
q :

jD describes a static charge distribution; jf describes a d.c. cir-
culating current. The electric field generated by jD balances out
the Lorentz force due to jf and B0. The overall amplitude and
phase in A0 can be arbitrary, but jD and jf are phase-locked to
each other by a ratio of sgn(oc), that is, the sign of magnetic field.
In the chiral representation, with the arbitrary phase ignored, the
zero-mode wavefunction behaves in the below manner:

Jzeromode rð Þ /
� iffiffi

2
p e� if

sgnðocÞ
þ iffiffi

2
p eþ if

0
B@

1
CA e� ocj j

up
rffiffiffiffiffiffiffiffiffi

ocj j
up

r
q ; r4að Þ: ð23Þ

We see that the Majorana-type topological edge state within
the bandgap indeed preserve as o! 0 and n ¼ 0, on the
finite-sized inner edge of a hollow disk. It is easy to verify that
shrinking the hole radius will only reduce the number of discrete
edge states at a finite n, but not kill the zero mode. These
observations are consistent with the ky-0 limit of the infinite
straight edge case (see Fig. 2c,d). Nevertheless, we should
cautiously note that the zero mode here is not isolated.
It degenerates with a large number of other zero-frequency
modes in the middle band (see Supplementary Note 4).

The guaranteed existence of zero mode in a hollow disk
geometry for 2D MP is reminiscent of the Majorana zero modes
in the two-band pþ ip topological superconductor30. In the latter
case, a p flux inside the vortex core is needed to balance the
antiperiodic boundary condition in the f direction. By
comparison, our three-band Hamiltonian here hosts zero mode
with periodic boundary condition, that is the wavefunction in
equation 23 returns to itself when f rotates 2p. More generally,
similar kind of discretized edge states and zero modes must exist
on a noncircular geometry as well, and can be on both the inner
and outer edges, if the geometry is finite. For a finite geometry,
the inner and outer edge zero modes must come out in pairs. If
one closes the inner boundary and turns the hollow disk into a
solid disk, then both modes must vanish. Otherwise, the vortex
currents associated with both zero modes are singular at the
centre, and are unphysical.

Discussion
Although the configuration of 2D MP looks almost identical to
that of the quantum Hall effect (QHE), there are fundamental
differences39. QHE deals with electron (fermionic) transport,
whereas 2D MP deals with collective electron-density oscillations
(bosonic excitations). In QHE, the bulk is electronically
insulating, whereas in 2D MP, the bulk is electronically
conducting. QHE experiments usually require a high magnetic
field (\5 T) and a high electron density (\1011 cm� 2). By

comparison, MP experiments normally does not require a high
magnetic field or a high electron density. Moreover, the bandgap
in QHE is for electron transport, while the bandgap for 2D MP is
for electron-density oscillations.

2D MP belongs to the topological class-D, which is different
from the quantum Hall class-A. The topological edge states in MP
are not governed by the traditional bulk-edge correspondence of
the quantum Hall states. The traditional rule states that the
number of gapless edge states inside a gap is equal to the sum of
all the bulk Chern numbers from the energy zero up to the gap. In
our topological MP, the lowest bulk band (zero-frequency flat
band) contributes zero Chern number. A generalized bulk-edge
correspondence must be established by considering the particle–
hole symmetry that extends the spectrum into the ‘redundant’
negative-frequency regime. This accounts for the Berry flux
exchanged across the zero frequency. Only by doing so, the sum
of all the bulk Chern numbers, spanning both the positive and
negative-frequency regimes, can be correctly kept zero.

Experiments for 2D plasmon were performed by pioneering
researchers dated back to 1970s on the charged liquid helium
surface33 and in the semiconductor inversion layer34. 2D MP was
first observed in the semiconductor inversion layer in 1977
(ref. 35) and edge MP was first observed on the liquid helium
surface in 1985 (ref. 37) by measuring radiofrequency absorption
peaks. The nonreciprocity of edge MP was verified in
semiconductor heterojunctions at microwave frequencies40.
Recently, similar experiments have been performed on 2D
materials58–61 and on the surface of a topological insulator62.
However, all the previous studies on edge MPs correspond to
Configuration-I in our paper, where the physical edge is formed
between a 2DEG and vacuum under a uniform magnetic field.

Our prediction of new one-way edge MP in Configuration-II
has not been reported, despite there have been similar studies in
the QHE systems63,64. Our prediction can, in principle, be
verified in any 2DEG system as long as a pair of opposite

Ferromagnetic film

Coplanar waveguide

Domain boundary

2DEG

B

Top view

One-way
edge plasmon

Semiconductor
heterojunction

Figure 6 | Schematics of a proposed experimental design based on the

2DEG in a semiconductor heterojunction. Microwave transmitted on the

coplanar waveguide can excite one-way edge plasmons at the boundary of

opposite magnetic domains. Characteristic resonant absorption can be

observed.
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magnetic fields is applied across. The magnetic domain boundary
can be experimentally created by, for example, two concentric
solenoids of opposite currents or ferromagnetic materials. The
gapless one-way edge modes can be mapped out by microwave
bulk transmission and by Fourier transforming near-field scans
along the edges, as demonstrated in ref. 65 for a topological
photonic system. In Fig. 6, we provide a schematic experimental
design. A semiconductor heterojunction serves as the platform for
2DEG. A ferromagnetic film is grown on the top and is polarized
into up- and down domains. For the circular domain boundary as
sketched, discretized one-way edge states can travel around.
A meandering coplanar waveguide can be fabricated on the back
of the substrate. One can then send in and receive microwave
signals at a frequency below oc, and in the meanwhile monitor
the characteristic absorption, which signifies the excitation of
one-way edge plasmons.

Our proposed zero-frequency bound modes feature localized
charge accumulation (inducing a static electric field) and
circulating current (inducing a static magnetic field). These
effects are in principle measurable when the zero mode is
actuated by charge or current injection.

In summary, we have revealed the salient topological nature of
2D MP as the first realization of the class-D topological phase.
The predicted new Majorana-type one-way edge states and zero
modes can be verified experimentally. Our work opens a new
dimension for topological bosons via introducing the bosonic
phase protected by the particle–hole symmetry. We anticipate
similar realizations for other bosonic particles66 and discoveries
of new topological phases, after combining the particle–hole
symmetry with other symmetries67, for example, the time-
reversal and many kinds of spatial symmetries10,68.

Methods
Theoretical model. Our theoretical model of 2D MP is based on a hydrodynamic
formalism. In equilibrium, the 2D electron number density is n0(r), which is
determined by the device structure, doping concentration and gating condition38.
Off equilibrium, the density changes to n(r, t). For 2D MP, we are only concerned
with the small deviation of 2D charge density, r(r, t)¼ � e{n(r,t)� n0(r)}, and the
induced 2D current density up to the linear order, j(r, t)¼ � en0(r)v(r,t), where
v(r, t) is the local velocity of electron gas restricted to move in the z¼ 0 plane only.

For massive electrons, the conductivity coefficient is a rð Þ ¼ e2 n0 rð Þ
m?

and the cyclotron

frequency is oc rð Þ ¼ eB0 rð Þ
m�c (refs 32,54). For massless electrons in, for example,

graphene, they are generalized to a rð Þ ¼ e2uF

ffiffiffiffiffiffiffiffi
n0 rð Þ
p
‘
ffiffi
p
p and oc rð Þ ¼ eu2

F B0 rð Þ
cEF

, where uF is

the Fermi velocity and EF is the Fermi energy69,70. Hence, our theory works for
both massive and massless electrons.

We consider a model system shown in Fig. 1a. With different choices of the
material constants and structural parameters, it can lead to different practical
2DEG systems, such as charged liquid-helium surface, metal–insulator–
semiconductor junction, top-gated graphene transistor, and so on. In Fig. 1a, the
2DEG lies in the z¼ 0 plane. The 0ozodA region is filled with an insulator
(or vacuum) of the dielectric constant EA. The � dBozo0 region is filled with
another insulator (or semiconductor) of the dielectric constant EB. The z4dA and
zo� dB regions are filled with perfect metals whose dielectric constant is
EM¼ �N in the (radio to microwave) frequency range of MP. Encapsulating the
system by two metals mimics the experimental configurations with top and bottom
electrodes, and in the meanwhile, cutoffs the theoretically infinitely long-ranged
Coulomb interaction.

For the results shown in the main article, we simply choose EA¼ EB¼ E0¼ 1
(vacuum permittivity), m*¼m0 (bare electron mass), dA¼ dB¼ d¼ 1 mm and
n0¼ 1 mm� 2¼ 108 cm� 2. We can thus obtain a characteristic frequency,

o? ¼
ffiffiffiffiffiffiffiffiffiffi
2pe2 n0

m0d

q
¼ 3:99�1010 s� 1, (that is, f? ¼ o?

2p ¼ 6:35 GHz), which is used to

normalize the frequencies. For the case of cyclotron frequency oc ¼ o? , we have
B0¼ 0.22 T.

Cartesian representation. In the main article we have used the chiral repre-
sentation for the bulk Hamiltonian and generalized current vector, in order to
demonstrate the similarity between our 2D MP and the 2D pþ ip topological
superconductor. However, it is sometimes more convenient to adopt the traditional
Cartesian representation, especially when we solve for the edge modes and apply
boundary conditions on the edge. In the Cartesian representation, the bulk

Hamiltonian equation reads

oJ q; oð Þ ¼ H qð ÞJ q; oð Þ; J q; oð Þ �
jx q; oð Þ
jD q; oð Þ
jy q; oð Þ

0
@

1
A;

where the Hamiltonian in this representation reads

H qð Þ ¼
0 op qð Þ

q qx � ioc

op qð Þ
q qx 0 op qð Þ

q qy

þ ioc
op qð Þ

q qy 0

0
BB@

1
CCA

!q!0
0 upqx � ioc

upqx 0 upqy

þ ioc upqy 0

0
@

1
A: ð24Þ

The particle–hole and time-reversal operators in this Cartesian representation
are

C ¼
1 0 0
0 1 0
0 0 1

0
@

1
AK

������
q!� q

; T ¼
� 1 0 0
0 1 0
0 0 � 1

0
@

1
AK

������
q!� q

: ð25Þ

Clearly, C is just a complex conjugation on the matrix or vector elements
(combined with a momentum reversal q-� q here, when written on the single-
particle momentum bases).

Numerical scheme. To numerically solve the nonuniform edge state problem,
which is unrestricted by the long-wavelength approximation, we expand the gov-
erning equations 1 and 2 in the main article into plane waves and use the form of
interaction in the momentum space equation 3. We can derive a matrix equation in
the Cartesian representation,

o
Jx q; oð Þ
JD q; oð Þ
Jy q; oð Þ

0
@

1
A ¼ 0 Ux q; q0ð Þ � iW q; q0ð Þ

Qx q; q0ð Þ 0 Qy q; q0ð Þ
þ iW q; q0ð Þ Uy q; q0ð Þ 0

0
@

1
A Jx q; oð Þ

JD q; oð Þ
Jy q; oð Þ

0
@

1
A :

ð26Þ
The submatrices Ux q; q0ð Þ, Uy q; q0ð Þ, Qx q; q0ð Þ, Qy q; q0ð Þ, W q; q0ð Þ, and the

subcolumn vectors Jx q0ð Þ, JD q0ð Þ, Jy q0ð Þ all have the dimension of the number of
plane waves used for expansion.

The elements of submatrices are

Ux q; q0ð Þ ¼ 2p~a q� q0ð Þ q0x
q0x q0ð Þ ; ð27Þ

Uy q; q0ð Þ ¼ 2p~a q� q0ð Þ
q0y

q0x q0ð Þ ; ð28Þ

Qx q; q0ð Þ ¼ dq; q0q
0
x ; ð29Þ

Qy q; q0ð Þ ¼ dq; q0q
0
y ; ð30Þ

and

W q; q0ð Þ ¼ oc q� q0ð Þ: ð31Þ
where ~a Dqð Þ and oc Dqð Þ with Dq ¼ q� q0 are the Fourier transform of a rð Þ and
oc rð Þ. For the system with edges along the y axis, the expansion only needs to be
done in the x direction while keeping qy ¼ q0y as good quantum numbers.
Typically, we use 128 plane waves to do the expansion, and the standard eigen-
solver to obtain all the eigenfrequencies and eigenvectors.

The 2D real-space calculation for Fig. 3 is performed by a homemade finite-
difference time-domain code. The field quantities are defined on a square grid.
Equations 1 and 2 are adopted for the real-time evolution after replacing � io with
qt. A point-source term of a given driving frequency is added to the right-hand side
of equation 2.

Data availability. All relevant data are available from the authors on request.
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