10 research outputs found

    Slip velocity dependence of friction-permeability response of shale fractures

    No full text
    Fluid injection-induced fracture slip during hydraulic stimulation of shales may be seismic or aseismic with the slip mode potentially influencing the evolution of permeability and subsequent shale gas production. We report a series of friction-permeability tests with constant and stepped velocities on planar saw-cut fractures of Longmaxi shale, Green River shale and Marcellus shale. In particular we explore the additive effect of stepped velocity on fracture permeability evolution relative to the background permeability driven at constant velocity. Fracture permeability decreases at larger slip displacement at constant velocity presumably due to asperity degradation and clay swelling. Sudden up-steps in slip velocity temporarily enhance fracture permeability as a result of shear dilation on hard minerals, but permeability net decreases with increasing slip displacement as wear products fill the pore space. Fracture surface roughness is the link between the fracture permeability and friction coefficient, which are both influenced by mineralogical composition. The fractures and sheared-off particles in the tectosilicate-rich and carbonate-rich shales dilate to increase fracture permeability, whereas asperity comminution readily occurs in the phyllosilicate-rich shale to reduce fracture permeability. The results potentially improve our ability to facilitate shale gas extraction and to mitigate the associated seismic risks

    Factors affecting prefabricated construction promotion in China: A structural equation modeling approach.

    No full text
    Prefabricated construction (PC) has attracted wide spread attention as a model of sustainable development for the construction industry of the future. Although the PC has many advantages, it is still at an initial stage in China. Based on the current conditions in China, this study focuses on the interrelationships of factors affecting PC promotion. Firstly, through a comprehensive review of relevant literatures and expert recommendations, 5 factors were identified: policy factor, technical factor, management factor, market factor and cost factor. Next, the data were collected through a questionnaire survey, and the questionnaire data were processed using SPSS 24.0 and AMOS 22.0. The overall relationships of each factor were quantitatively analyzed with Structural Equation Modeling (SEM). The results show that the policy factor plays a dominant role, while the management factor and market factors are also significant. This study also provides decision makers with relevant information about the factors involved, which will be helpful in devising appropriate strategies for the wider adoption of PC

    Mechanical-Chemical-Mineralogical Controls on Permeability Evolution of Shale Fractures

    No full text
    We report experimental observations of permeation of CO2-rich aqueous fluids of varied acidic potential (pH) on three different shales to investigate mechanical, chemical, and mineralogical effects on fracture permeability evolution. Surface profilometry and SEM-EDS (scanning electron microscopy with energy-dispersive X-ray spectroscopy) methods are employed to quantify the evolution in both roughness on and chemical constituents within the fracture surface. Results indicate that, after 12 hours of fluid flow, fracture effective hydraulic apertures evolve distinctly under different combinations of shale mineralogy, effective stress, and fluid acidity. The evolution of roughness and transformation of chemical elements on the fracture surface are in accordance with the evolution of permeability. The experimental observations imply that (1) CO2-rich aqueous fluids have significant impact on the evolution of fracture permeability and may influence (and increase) shale gas production; (2) shale mineralogy, especially calcite mineral, decides the chemical reaction and permeability increasing when CO2-rich aqueous fluids flow through fractures by free-face dissolution effect; (3) clay mineral swelling reduces fracture aperture and additively calcite pressure solution removes the bridging asperities, which are the main reasons for fracture permeability decrease; (4) competition roles among clay mineral swelling, mineral pressure solution, and free-face dissolution determine how fracture permeability changes. Furthermore, a multiple parameter model is built to analyze effective hydraulic aperture evolution in considering above three mechanisms, which provide a reference to forecast fracture permeability evolution in shale formations

    miR-1929-3p Overexpression Alleviates Murine Cytomegalovirus-Induced Hypertensive Myocardial Remodeling by Suppressing Ednra/NLRP3 Inflammasome Activation

    No full text
    MicroRNAs (miRNAs) play crucial roles in the development of essential hypertension (EH). Previously, we found that the expression of miR-1929-3p was decreased in C57BL/6 mice with hypertension induced by murine cytomegalovirus (MCMV). In this study, we explored the role of miR-1929-3p in hypertension myocardial remodeling in MCMV-infected mice. First, we measured MCMV DNA and host IgG and IgM after infection and determined the expression of miR-1929-3p and its target gene endothelin A receptor (Ednra) mRNA in the myocardium of mice. Then, we performed invasive blood pressure (BP) monitoring. Heart-to-body weight ratio (HW/BW%), along with mRNA levels of B-type natriuretic peptide (BNP) and beta myosin heavy chain (β-MHC), revealed myocardial remodeling. Hematoxylin/eosin and Masson’s trichrome staining indicated morphological changes in the myocardium. Cardiac function was assessed via echocardiography. Moreover, MCMV-infected mice were injected with recombinant adeno-associated virus- (rAAV-) miR-1929-3p overexpression vector. Immunohistochemistry and western blotting showed the expression of Ednra and the activation of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. And enzyme-linked immunosorbent assay (ELISA) revealed the concentrations of endothelin-1 (ET-1), interleukin-1β (IL-1β), and interleukin-18 (IL-18). In this study, we found that decreased expression of miR-1929-3p in MCMV-infected mice induced high BP and further development of myocardial remodeling cardiac function injury through increased expression of Ednra. Strikingly, overexpression of miR-1929-3p ameliorated these pathological changes of the heart. The positive effect was shown to be associated with inhibition of NLRP3 inflammasome activation and decreased expression of key proinflammatory cytokine IL-1β. Collectively, these results indicate that miR-1929-3p overexpression may effectively alleviate EH myocardial remodeling by suppressing Ednra/NLRP3 inflammasome activation in MCMV-infected mice
    corecore