44,039 research outputs found

    Nuclear modification factor in intermediate-energy heavy-ion collisions

    Get PDF
    The transverse momentum dependent nuclear modification factors (NMF), namely RCPR_{CP}, is investigated for protons produced in Au + Au at 1AA GeV within the framework of the isospin-dependent quantum molecular dynamics (IQMD) model. It is found that the radial collective motion during the expansion stage affects the NMF at low transverse momentum a lot. By fitting the transverse mass spectra of protons with the distribution function from the Blast-Wave model, the magnitude of radial flow can be extracted. After removing the contribution from radial flow, the RCPR_{CP} can be regarded as a thermal one and is found to keep unitary at transverse momentum lower than 0.6 GeV/c and enhance at higher transverse momentum, which can be attributed to Cronin effect.Comment: 8 pages, 5 figures; aceepted by Physics Letters

    Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe_{m}SbTe_{2+m}$ ; The Role of Ag-Sb Microstructures

    Full text link
    Ab initio electronic structure calculations based on gradient corrected density functional theory were performed on a class of novel quaternary compounds AgPbmSbTe_{m}SbTe_{2+m}$, which were found to be excellent high temperature thermoelctrics with large figure of merit ZT ~2.2 at 800K. We find that resonant states appear near the top of the valence and bottom of the conduction bands of bulk PbTe when Ag and Sb replace Pb. These states can be understood in terms of modified Te-Ag(Sb) bonds. Electronic structure near the gap depends sensitively on the microstructural arrangements of Ag-Sb atoms, suggesting that large ZT values may originate from the nature of these ordering arrangements.Comment: Accepted in Physical Review Letter

    The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete

    Get PDF
    This paper investigates the mechanisms of microstructure evolution of interfacial transition zone (ITZ) in alkali-activated fly ash-slag (AAFS) concrete using scanning electron microscope. Results indicate that the formation of original ITZ depends on the so-called “wall effect”, leading to a deficit of large grains and a higher effective alkaline activator/precursor ratio compared to paste matrix. The alkaline reaction process is correspondingly accelerated, which promotes the formation of low Ca C-(N)-A-S-H gels and reduces the porosity in the ITZ. Afterwards, the high Ca C-(N)-A-S-H gels are generated due to the release of more Ca from slag, resulting in the continuous refinement of pores. The C-(N)-A-S-H gels with rich Si and Al are then produced at 7 d, attributing to the species diffusion from paste matrix to ITZ. Consequently, a compact and dense microstructure is formed in the ITZ at 28 d, which would be beneficial to the long-term performance of concrete

    Scattering of plasmons at the intersection of two metallic nanotubes: Implications for tunnelling

    Full text link
    We study theoretically the plasmon scattering at the intersection of two metallic carbon nanotubes. We demonstrate that for a small angle of crossing, θ1\theta \ll 1, the transmission coefficient is an oscillatory function of λ/θ\lambda/\theta, where λ\lambda is the interaction parameter of the Luttinger liquid in an individual nanotube. We calculate the tunnel density of states, ν(ω,x)\nu(\omega,x), as a function of energy, ω\omega, and distance, xx, from the intersection. In contrast to a single nanotube, we find that, in the geometry of crossed nanotubes, conventional "rapid" oscillations in ν(ω,x)\nu(\omega,x) due to the plasmon scattering acquire an aperiodic "slow-breathing" envelope which has λ/θ\lambda/\theta nodes.Comment: 4 pages, 2 figures (revised version

    Constraints on B--->pi,K transition form factors from exclusive semileptonic D-meson decays

    Full text link
    According to the heavy-quark flavour symmetry, the Bπ,KB\to \pi, K transition form factors could be related to the corresponding ones of D-meson decays near the zero recoil point. With the recent precisely measured exclusive semileptonic decays DπνD \to \pi \ell \nu and DKνD\to K \ell \nu, we perform a phenomenological study of Bπ,KB \to \pi, K transition form factors based on this symmetry. Using BK, BZ and Series Expansion parameterizations of the form factor slope, we extrapolate Bπ,KB \to \pi, K transition form factors from qmax2q^{2}_{max} to q2=0q^{2}=0. It is found that, although being consistent with each other within error bars, the central values of our results for Bπ,KB \to \pi, K form factors at q2=0q^2=0, f+Bπ,K(0)f_+^{B\to \pi, K}(0), are much smaller than predictions of the QCD light-cone sum rules, but are in good agreements with the ones extracted from hadronic B-meson decays within the SCET framework. Moreover, smaller form factors are also favored by the QCD factorization approach for hadronic B-meson decays.Comment: 19 pages, no figure, 5 table
    corecore