58,646 research outputs found

    Multiband Emission from Pulsar Wind Nebulae: A Possible Injection Spectrum

    Full text link
    A recent research shows that particles with a spectrum of a relativistic Maxwellian plus a high-energy tail can be accelerated by relativistic collisionless shocks. We investigate the possibility of the high-energy particles with this new spectrum injected in pulsar wind nebulae (PWNe) from the terminate shock based on the study of multiwavelength emission from PWNe.} {The dynamics of a supernova remnant (SNR) and multiband nonthermal emission from the PWN inside the remnant are investigated using a dynamical model with electrons/positrons injected with the new spectrum. In this model, the dynamical and radiative evolution of a pulsar wind nebula in a non-radiative supernova remnant can be self-consistently described.} {This model is applied to the three composite SNRs, G0.9+0.1, MSH 15-52, G338.3-0.0, and the multiband observed emission from the three PWNe can be well reproduced.} {Our studies on the three remnant provide evidence for the new spectrum of the particles, which are accelerated by the terminate shock, injected into a PWN.Comment: 9 pages, 9 figures, accepted by A&

    Abundance of moderate-redshift clusters in the Cold + Hot dark matter model

    Full text link
    Using a set of \pppm simulation which accurately treats the density evolution of two components of dark matter, we study the evolution of clusters in the Cold + Hot dark matter (CHDM) model. The mass function, the velocity dispersion function and the temperature function of clusters are calculated for four different epochs of z0.5z\le 0.5. We also use the simulation data to test the Press-Schechter expression of the halo abundance as a function of the velocity dispersion σv\sigma_v. The model predictions are in good agreement with the observational data of local cluster abundances (z=0z=0). We also tentatively compare the model with the Gunn and his collaborators' observation of rich clusters at z0.8z\approx 0.8 and with the x-ray luminous clusters at z0.5z\approx 0.5 of the {\it Einstein} Extended Medium Sensitivity Survey. The important feature of the model is the rapid formation of clusters in the near past: the abundances of clusters of \sigma_v\ge 700\kms and of \sigma_v\ge 1200 \kms at z=0.5z=0.5 are only 1/4 and 1/10 respectively of the present values (z=0z=0). Ongoing ROSAT and AXAF surveys of distant clusters will provide sensitive tests to the model. The abundance of clusters at z0.5z\approx 0.5 would also be a good discriminator between the CHDM model and a low-density flat CDM model both of which show very similar clustering properties at z=0z=0.Comment: 21 pages + 6 figures (uuencoded version of the PS files), Steward Preprints No. 118

    Photon reabsorption in fluorescent solar collectors

    No full text
    Understanding photon transport losses in fluorescence solar collectors is very important for increasing optical efficiencies. We present an analytical expression to characterize photon reabsorption in fluorescent solar collectors, which represent a major source of photon loss. A particularly useful universal form of this expression is found in the limit of high reabsorption, which gives the photon reabsorption probability in a simple form as a function of the absorption coefficient and the optical étendue of the emitted photon beam. Our mathematical model predicts fluorescence spectra emitted from the collector edge, which are in excellent agreement with experiment and provide an effective characterization tool for photon transport in light absorbing media
    corecore