33,452 research outputs found

    A new effective interaction for the trapped Fermi gas

    Full text link
    We apply the configuration-interaction method to calculate the spectra of two-component Fermi systems in a harmonic trap, studying the convergence of the method at the unitary interaction limit. We find that for a fixed regularization of the two-body interaction the convergence is exponential or better in the truncation parameter of the many-body space. However, the conventional regularization is found to have poor convergence in the regularization parameter, with an error that scales as a low negative power of this parameter. We propose a new regularization of the two-body interaction that produces exponential convergence for systems of three and four particles. From the systematics, we estimate the ground-state energy of the four-particle system to be (5.05 +- 0.024)hbar omega.Comment: 4 pages, 3 figure

    Topology of the polarization field in ferroelectric nanowires from first principles

    Full text link
    The behaviour of the cross-sectional polarization field is explored for thin nanowires of barium titanate from first-principles calculations. Topological defects of different winding numbers have been obtained, beyond the known textures in ferroelectric nanostructures. They result from the inward accommodation of the polarization patterns imposed at the surface of the wire by surface and edge effects. Close to a topological defect the polarization field orients out of the basal plane in some cases, maintaining a close to constant magnitude, whereas it virtually vanishes in other cases.Comment: 4 pages, 3 figure

    LDA+Gutzwiller Method for Correlated Electron Systems

    Full text link
    Combining the density functional theory (DFT) and the Gutzwiller variational approach, a LDA+Gutzwiller method is developed to treat the correlated electron systems from {\it ab-initio}. All variational parameters are self-consistently determined from total energy minimization. The method is computationally cheaper, yet the quasi-particle spectrum is well described through kinetic energy renormalization. It can be applied equally to the systems from weakly correlated metals to strongly correlated insulators. The calculated results for SrVO3_3, Fe, Ni and NiO, show dramatic improvement over LDA and LDA+U.Comment: 4 pages, 3 figures, 1 tabl

    Pinning control of fractional-order weighted complex networks

    Get PDF
    In this paper, we consider the pinning control problem of fractional-order weighted complex dynamical networks. The well-studied integer-order complex networks are the special cases of the fractional-order ones. The network model considered can represent both directed and undirected weighted networks. First, based on the eigenvalue analysis and fractional-order stability theory, some local stability properties of such pinned fractional-order networks are derived and the valid stability regions are estimated. A surprising finding is that the fractional-order complex networks can stabilize itself by reducing the fractional-order q without pinning any node. Second, numerical algorithms for fractional-order complex networks are introduced in detail. Finally, numerical simulations in scale-free complex networks are provided to show that the smaller fractional-order q, the larger control gain matrix D, the larger tunable weight parameter , the larger overall coupling strength c, the more capacity that the pinning scheme may possess to enhance the control performance of fractional-order complex networks

    Lateral shift of the transmitted light beam through a left-handed slab

    Full text link
    It is reported that when a light beam travels through a slab of left-handed medium in the air, the lateral shift of the transmitted beam can be negative as well as positive. The necessary condition for the lateral shift to be positive is given. The validity of the stationary-phase approach is demonstrated by numerical simulations for a Gaussian-shaped beam. A restriction to the slab's thickness is provided that is necessary for the beam to retain its profile in the traveling. It is shown that the lateral shift of the reflected beam is equal to that of the transmitted beam in the symmetric configuration.Comment: 14 pages, 4 figure

    Two successive field-induced spin-flop transitions in single-crystalline CaCo2_{2}As2_{2}

    Full text link
    CaCo2_{2}As2_{2}, a ThCr2_{2}Si2_{2}-structure compound, undergoes an antiferromagnetic transition at \emph{TN_{N}}=76K with the magnetic moments being aligned parallel to the \emph{c} axis. Electronic transport measurement reveals that the coupling between conducting carriers and magnetic order in CaCo2_{2}As2_{2} is much weaker comparing to the parent compounds of iron pnictide. Applying magnetic field along \emph{c} axis induces two successive spin-flop transitions in its magnetic state. The magnetization saturation behaviors with \emph{\textbf{H}\parallelc} and \emph{\textbf{H}\parallelab} at 10K indicate that the antiferromagnetic coupling along \emph{c} direction is very weak. The interlayer antiferromagntic coupling constant \emph{Jc_{c}} is estimated to be about 2 meV.Comment: Accepted for publication in Phys. Rev. B. 5 pages, 6 figure
    corecore